RESEARCH & PUBLICATIONS



Next-generation restoration for sage-grouse: a framework for visualizing local conifer cuts within a landscape context

View article.

In this paper, optimization models successfully identified areas with low conifer canopy cover, high resilience and resistance to wildfire and annual grass invasion, and high bird abundance to enhance sage-grouse habitat. The inclusion of mesic resources resulted in further prioritization of areas that were closer to such resources, but also identified potential pathways that connected breeding habitats to the late brood-rearing habitats associated with mesic areas. Areas identified by optimization models were largely consistent with and overlapped ongoing conifer removal efforts in the Warner Mountains of south-central Oregon. Land ownership of preferential areas selected by models varied with priority goals and followed general ownership patterns of the region, with public lands managed by the Bureau of Land Management and private lands being selected the most. The increased availability of landscape-level datasets and assessment tools in sagebrush ecosystems can reduce the time and cost of both planning and implementation of habitat projects involving conifer removal. Most importantly, incorporating these new datasets and tools can supplement expert-based knowledge to maximize benefits to sagebrush and sage-grouse conservation.