Decision Support

Journal article icon

Multiple social and environmental factors affect wildland fire response of full or less-than-full suppression

View article.

Wildland fire incident commanders make wildfire response decisions within an increasingly complex socioenvironmental context. Threats to human safety and property, along with public pressures and agency cultures, often lead commanders to emphasize full suppression. However, commanders may use less-than-full suppression to enhance responder safety, reduce firefighting costs, and encourage beneficial effects of fire. This study asks: what management, socioeconomic, environmental, and fire behavior characteristics are associated with full suppression and the less-than-full suppression methods of point-zone protection, confinement/ containment, and  maintain/monitor? We analyzed incident report data from 374 wildfires in the United States northern Rocky Mountains between 2008 and 2013. Regression models showed that full suppression was most strongly associated with higher housing density and earlier dates in the calendar year, along with non-federal land jurisdiction, regional and national incident management teams, human-caused ignitions, low fire-growth potential, and greater fire size. Interviews with commanders provided decision-making context for these regression results. Future efforts to encourage less-than-full suppression should address the complex management context, in addition to the biophysical context, of fire response.

Journal article icon

Factors influencing wildfire management decisions after the 2009 US federal policy update

View article.

To contextualize decision factors within the decision making process, we offer a Wildfire Decision Framework that has value for policy makers seeking to improve decision making, managers improving their process and wildfire social science researchers.

Factsheet/brief icon

PODs story map from CO Forest Restoration Institute

View story map

Potential Operational Delineations (PODs) a strategic collaborative spatial wildfire planning framework and decision support tool for wildfire response and mitigation. Background, primer, and use of sections included.

Journal article icon

Potential Operational Delineations (PODs) in practice

View brief.

Reducing PODs (potential operational delineations) to a network of suppression-focused fuel breaks may dilute the intent and diminish the richness of the framework. Using PODs and fuel breaks to perpetuate fire exclusion is not likely to be effective and may set us up for failure. In many forest types, we may need to rethink design of fuel breaks along POD boundaries to support expansion of proactive use of fire.

Journal article icon

Grassland intactness outcompetes species as a more efficient surrogate in conservation design

View article.

Mapped representations of species−habitat relationships often underlie approaches to prioritize area-based conservation strategies to meet conservation goals for biodiversity. Generally a single surrogate species is used to inform conservation design, with the assumption that conservation actions for an appropriately selected species will confer benefits to a broader community of organisms. Emerging conservation frameworks across western North America are now relying on derived measures of intactness from remotely sensed vegetation data, wholly independent from species data. Understanding the efficacy of species-agnostic planning approaches is a critical step to ensuring the robustness of emerging conservation designs. We developed an approach to quantify ‘strength of surrogacy’, by applying prioritization algorithms to previously developed species models, and measuring their coverage provided to a broader wildlife community. We used this inference to test the relative surrogacy among a suite of species models used for conservation targeting in the endangered grasslands of the Northern Sagebrush Steppe, where careful planning can help stem the loss of private grazing lands to cultivation. In this test, we also derived a simpler surrogate of intact rangelands without species data for conservation targeting, along with a measure of combined migration representative of key areas for connectivity. Our measure of intactness vastly outperformed any species model as a surrogate for conservation, followed by that of combined migration, highlighting the efficacy of strategies that target large and intact rangeland cores for wildlife conservation and restoration efforts.

Journal article icon

Combining resilience and resistance with threat-based approaches for prioritizing management actions in sagebrush ecosystems

View article.

The sagebrush biome is a dryland region in the western United States experiencing rapid transformations to novel ecological states. Threat-based approaches for managing anthropogenic and ecosystem threats have recently become prominent, but successfully mitigating threats depends on the ecological resilience of ecosystems. We used a spatially explicit approach for prioritizing management actions that combined a threat-based model with models of resilience to disturbance and resistance to annual grass invasion. The threat-based model assessed geographic patterns in sagebrush ecological integrity (SEI) to identify core sagebrush, growth opportunity, and other rangeland areas. The resilience and resistance model identified ecologically relevant climate and soil water availability indicators from process-based ecohydrological models. The SEI areas and resilience and resistance indicators were consistent – the resilience and resistance indicators showed generally positive relationships with the SEI areas. They also were complementary – SEI areas provided information on intact sagebrush areas and threats, while resilience and resistance provided information on responses to disturbances and management actions. The SEI index and resilience and resistance indicators provide the basis for prioritizing conservation and restoration actions and determining appropriate strategies. The difficulty and time required to conserve or restore SEI areas increase as threats increases and resilience and resistance decrease.

Webinar, video, audio icon

Prioritizing landscape treatments

Webinar b.

Presenters will share an overall framework, analysis considerations plus a case study from the Southwest Idaho Wildfire Crisis Landscape. Manager questions and experiences to guide this session are encouraged.

Journal article icon

Fire history to identify seed needs in the Cold Deserts of the western US

View article.

This study used geospatial seed transfer zones as our focal management areas. We broadly considered generalized provisional seed transfer zones, created using climate and stratified by ecoregion, but also present results for empirical seed transfer zones, based on species‐specific research, as part of our case study. Historic fire occurrence was effective for prioritizing seed transfer zones: 23 of 132 provisional seed transfer zones burned every year, and, within each ecoregion, two provisional seed transfer zones comprised ≧50% of the total area burned across all years. Fire occurrence within PACs largely reflected the seed transfer zone priorities found for the ecoregion as a whole. Our results demonstrate that historic disturbance can be used to identify regions that encounter regular or large disturbance. This information can then be used to guide seed production, purchase, and storage, create more certainty for growers and managers, and ultimately increase restoration success.

Journal article icon

Identifying opportunity hot spots for reducing the risk of wildfire-caused carbon loss in western US forests

View article.

We found that relative to their total forest area, California, New Mexico, and Arizona contained the greatest proportion of carbon highly vulnerable to wildfire-caused loss. We also observed widespread opportunities in the western US for using proactive forest management to reduce the risk of wildfire-caused carbon loss, with many areas containing opportunities for simultaneously mitigating the greatest risk from wildfire to carbon and human communities. Finally, we highlighted collaborative and equitable processes that provide pathways to achieving timely climate- and wildfire-mitigation goals at opportunity hot spots.

Journal article icon

Prioritizing science efforts to inform decision making on public lands

View article.

We used the National Environmental Policy Act to identify four types of science information needed for making decisions relevant to public lands: (1) data on resources of concern, (2) scientific studies relevant to potential effects of proposed actions, (3) methods for quantifying potential effects of proposed actions, and (4) effective mitigation measures. We then used this framework to analyze 70 Environmental Assessments completed by the Bureau of Land Management in Colorado. Commonly proposed actions were oil and gas development, livestock grazing, land transactions, and recreation. Commonly analyzed resources included terrestrial wildlife, protected birds, vegetation, and soils. Focusing research efforts on the intersection of these resources and actions, and on developing and evaluating the effectiveness of mitigation measures to protect these resources, could strengthen the science foundation for public lands decision making.

Narrow your search

Stay Connected