Evidence for strong bottom-up controls on fire severity during extreme events

Journal article icon

View article.

Using random forest modeling and Shapley local importance measures, we found that weather and fuels were both dominant drivers of fire severity, and past fuel treatments were successful at reducing severity—even during extreme fire progression days. First-entry fires were more typically driven by top-down climate and weather variables, while for reburns (i.e., overlapping fire footprints within the period of record), severity was largely mitigated by reduced fuels and a positive influence of topography (e.g., burning downslope). Likewise, reburns overall exhibited lower fire severity than first entry fires, suggesting strong negative feedbacks associated with past fire footprints. The normalized difference moisture index (NDMI)—an indicator of live fuel loading and moisture levels—was a leading predictor of fire severity for both first-entry fires and reburns. NDMI values < 0 (i.e., low biomass) were associated with reduced fire severity, while values > 0.25 (i.e., high biomass) were associated with increased severity. Forest management was effective across a variety of conditions, especially under low to moderate wind speeds (< 17 m·s−1), and where canopy base heights were ≥ 1.3 m.

Stay Connected