Research and Publications

Journal article icon

Beyond planning tools: Experiential learning in climate adaptation planning and practices

View article.

Here, we describe a training approach that we developed to help managers effectively plan to execute intentional, climate-informed actions. This training approach was developed through the Climate Change Response Framework (CCRF) and uses active and focused work time and peer-to-peer interaction to overcome observed barriers to using adaptation planning tools. We evaluate the effectiveness of this approach by examining participant evaluations and outlining the progress of natural resources projects that have participated in our trainings. We outline a case study that describes how this training approach can lead to place and context-based climate-informed action. Finally, we describe best practices based on our experience for engaging natural resources professionals and helping them increase their comfort with climate-informed planning.

Journal article icon

Effects of post-fire management on vegetation and fuels following successive wildfires in mixed conifer forests

View article.

Results of our study suggest that post-fire vegetation structure and woody fuels play an important role in subsequent fire severity patterns and ultimately influence the resilience of post-fire landscapes to future fire. In areas where high-severity reburn is undesirable, managers should consider treatments that reduce the density and continuity of vegetation, standing snags, and large woody surface fuels. In areas where proactive reforestation
is necessary, planting in areas that are in rough or mesic terrain may reduce the likelihood of high-severity reburn. The results of our study also suggest that active post-fire management may be necessary in areas that have burned at low to moderate severity in order to maintain or promote the restorative benefits of an initial fire or to restore the dominance of fire resilient tree species.

Journal article icon

Fireshed Registry: Fireshed and project area boundaries for the continental US

View article.

The Fireshed Registry is a geospatial dashboard and decision tool built to organize information about wildfire transmission to communities and monitor progress towards risk reduction for communities from management investments. The concept behind the Fireshed Registry is to identify and map the source of risk rather than what is at risk across all lands in the continental United States. While the Fireshed Registry was organized around mapping the source of fire risk to communities, the framework does not preclude the assessment of other resource management priorities and trends such as water, fish and aquatic or wildlife habitat, or recreation. The Fireshed Registry is also a multi-scale decision tool for quantifying, prioritizing, and geospatially displaying wildfire transmission to buildings in adjacent or nearby communities.

Journal article icon

Contrasting the role of human- and lightning-caused wildfires on future fire regimes on a Central Oregon landscape

View article.

No significant change was projected for the number of human-caused fire ignitions, but we projected a 14% reduction in lightning-caused ignitions under future conditions. Mean fire sizes were 31% and 22% larger under future conditions (2031–2060) for human and lightning-caused ignitions, respectively. All but one climate model projected increased frequency of record-breaking events relative to the contemporary period, with the largest future fires being about twice the size of those of the contemporary period. This work contributes to understanding the role of lightning- and human-caused fires on future fire regimes and can help inform successful adaptation strategies in this landscape.

Journal article icon

Historical fire and Ventenata dubia invasion in a temperate grassland

View article.

Our data revealed that ventenata frequency and cover increased on all plots. However, there was not significantly higher abundance in burned plots in any of the sampling years. In addition, ventenata abundance did not increase more in burned plots over time. Our findings suggest that, unlike cheatgrass, fire may not be a driving factor in the spread and increase of ventenata across the PNB Prairie. This finding has important implications for the management and control of ventenata, as well as the conservation of the PNB Prairie.

Journal article icon

Creating a Great Basin native annual forb seed increase program: Lessons learned

View article.

Our objective was to start a small, native, annual forb production program, testing strategies to increase 6 species over 4 y. We found that seed of native annual forbs can be wild-collected in years with sufficient precipitation, and that they can be propagated using fall planting between rows of landscape fabric, without irrigation. Low-tech harvest methods, including vacuuming or sweeping off landscape fabric, and in some cases collecting and drying entire plants, can work for small-scale increases. For seed cleaning, a variety of sieves are key, and a seed blower can be helpful. We also present our plans for extending this work by testing the establishment of annual forbs in post-fire restoration projects. Our results demonstrate that seed production of native annual forbs can be achieved without specialized equipment or irrigation. For the majority of species, we were able to increase seed sufficiently so that it could be sown in larger agricultural-increase fields.

Synthesis/Technical Report icon

Rangeland land-sharing, livestock grazing’s role in conservation

View synthesis.

A review of United States Fish and Wildlife Service listing documents for 282 threatened and endangered species in California reveals a complex and varied relationship between grazing and conservation. According to these documents, 51% or 143 of the federally listed animal and plant species are found in habitats with grazing. While livestock grazing is a stated threat to 73% (104) of the species sharing habitat with livestock, 59% (85) of the species are said to be positively influenced, with considerable overlap between species both threatened and benefitting from grazing. Grazing is credited with benefiting flowering plants, mammals, insects, reptiles, amphibians, fish, crustaceans, and bird species by managing the state’s novel vegetation and providing and maintaining habitat structure and ecosystem functions. Benefits are noted for species across all of California’s terrestrial habitats, except alpine, and for some aquatic habitats, including riparian, wetlands, and temporary pools. Managed grazing can combat anthropomorphic threats, such as invasive species and nitrogen deposition, supporting conservation-reliant species as part of land sharing.

Factsheet/brief icon

Increasing aridity is forcing some treelines uphill

View research brief.

Lower treelines in the Intermountain West are often defined by the boundary beyond which conditions are too dry for trees. Scientists are observing tree mortality in response to global climate changes and associated increased aridity in some places. Land managers are keenly interested in these changing ecological dynamics and how forests will shift in response to climate change.

Journal article icon

Rapidly quantifying drought impacts to aid reseeding strategies

View article.

Because ecosystems are complex, ecological drought definitions currently are more conceptual than operational (e.g., “an episodic deficit in water availability that drives ecosystems beyond thresholds of vulnerability, impacts ecosystem services, and triggers feedbacks in natural and/or human systems”). Identification of drought and drought characteristics depends on the drought definition and metric being sought.

Factsheet/brief icon

The Green Glacier: What is conifer encroachment and why is it bad?

View brief.

Extensive research shows us that native conifer trees, primarily juniper and pinyon pine, but also other conifers, have been increasing their footprint on the landscape at an unprecedented rate over the last 150 years or so, especially in places like the Great Basin. This is part of a global phenomenon of trees encroaching into and replacing adjacent grasslands and shrublands.

Some of that change is expansion in the traditional sense, that is, trees moving from higher elevations or fuel-limited sites protected from fire where they historically existed into areas where they never grew before. But much of the change is what we call ‘infill,’ which is what happens after trees colonize and continue to populate previously tree-less landscapes, turning them from sagebrush or grasslands with just a few trees per acre into closed-canopy woodlands – what you might think of as a forest.

Narrow your search

Can't find what you need?

Stay Connected