Contrasting the efficiency of landscape versus community protection fuel treatment strategies to reduce wildfire exposure and risk
View article.
We examined the financial efficiency and effectiveness of landscape versus community protection fuel treatments to reduce structure exposure and loss to wildfire on a large fire-prone area of central Idaho. The study area contained 63,707 structures distributed in 20 rural communities and resorts, encompassing 13,804 km2. We used simulation modeling to estimate expected structure loss based on burn probability and characteristics of the home ignition zone. We then designed three fuel management strategies that targeted treatments to: 1) the surrounding areas predicted to be the source of exposure to communities from large fires, 2) the home ignition zone, and 3) a combination of the landscape and home ignition zone. We evaluated each treatment scenario in terms of exposure and expected structure loss compared to a no-treatment scenario. The potential revenue from wood products was estimated for each scenario to assess the cost-efficiency. We found that the combined landscape and home ignition zone treatment scenario which treated 5.7% of the study area resulted in the highest overall reduction in predicted exposure (47.5%, 100 structures yr- 1) and predicted loss (69.1%, 57 structures yr- 1). Home ignition zone treatments provided the best predicted economic and per area treated performance where exposure and loss were reduced by one structure by treating 89 and 111 ha per year, respectively, with an annual cost of $33,645 and $73,672. Revenue from thinning was the highest for landscape fuel treatments and covered 16% of the required investment. This work highlighted economic and risk tradeoffs associated with alternative fuel treatment strategies to protect developed areas from large wildland fires.