Research and Publications

A closed bound booklet with binoculars

Preparing a community wildfire protection plan: A guide

View guide.

In 2004, the Communities Committee of the Seventh American Forest Congress, Society of American Foresters, National Association of Counties, and the National Association of State Foresters sponsored and developed a handbook entitled Preparing a Community Wildfire Protection Plan. (Communities Committee of the Seventh American Forest Congress; Society of American Foresters; National Association of Counties; National Association of State Foresters, 2004) This guide is intended to supplement that handbook, with special considerations for local fire service leaders in communities identified as at-risk of wildfire. While adjacency to public lands (forests, brushlands and grasslands) can impact wildfire risk, there are ways to impact and reduce wildfire risk from within the community as well. This includes a focus on local codes and ordinances, home ignition Zones, defensible space, ignition-resistant construction and design standards, as well as hazardous fuels reduction in parks, common-owned areas, and open spaces within the local jurisdiction.

Open book with lines simulating text on left and right pages

Critique of the historical-fire-regime concept in conservation

View article.

In North America, decisions about how and when to apply prescribed fire are typically based on the historical-fire-regime concept (HFRC), which holds that replicating the pattern of fires ignited by lightning or preindustrial humans best promotes native species in fire-prone regions. This study found that the practice of inferring historical fire regimes for entire regions or ecosystems often entails substantial uncertainty and can yield equivocal results; ecological outcomes of fire suppression are complex and may not equate to degradation, depending on the ecosystem and context; and habitat fragmentation, invasive species, and other modern factors can interact with fire to produce novel and in some cases negative ecological outcomes. Although the HFRC is a valuable starting point, it should not be viewed as the sole basis for developing prescribed fire programs. Rather, fire prescriptions should also account for other specific, measurable ecological parameters on a case-by-case basis.

Open book with lines simulating text on left and right pages

Next-generation restoration for sage-grouse: A framework for visualizing local conifer cuts within a landscape context

View article.

In this paper, optimization models successfully identified areas with low conifer canopy cover, high resilience and resistance to wildfire and annual grass invasion, and high bird abundance to enhance sage-grouse habitat. The inclusion of mesic resources resulted in further prioritization of areas that were closer to such resources, but also identified potential pathways that connected breeding habitats to the late brood-rearing habitats associated with mesic areas. Areas identified by optimization models were largely consistent with and overlapped ongoing conifer removal efforts in the Warner Mountains of south-central Oregon. Land ownership of preferential areas selected by models varied with priority goals and followed general ownership patterns of the region, with public lands managed by the Bureau of Land Management and private lands being selected the most. The increased availability of landscape-level datasets and assessment tools in sagebrush ecosystems can reduce the time and cost of both planning and implementation of habitat projects involving conifer removal. Most importantly, incorporating these new datasets and tools can supplement expert-based knowledge to maximize benefits to sagebrush and sage-grouse conservation.

Open book with a bar chart on left page and line graph and lines simulating text on the right page

Hierarchical population monitoring of greater sage-grouse in Nevada and California—Identifying populations for management at the appropriate spatial scale

View report.

This report identified leks and larger scale populations in immediate need of management, based on the occurrence of two criteria: (1) crossing of a destabilizing threshold designed to identify significant rates of population decline at a particular nested scale; and (2) crossing of decoupling thresholds designed to identify rates of population decline at smaller scales that decouple from rates of population change at a larger spatial scale. This approach establishes how declines affected by local disturbances can be separated from those operating at larger scales (for example, broad-scale wildfire and region-wide drought). Given the threshold output from our analysis, this adaptive management framework can be implemented readily and annually to facilitate responsive and effective actions for sage-grouse populations in the Great Basin. The rules of the framework can also be modified to identify populations responding positively to management action or demonstrating strong resilience to disturbance. Similar hierarchical approaches might be beneficial for other species occupying landscapes with heterogeneous disturbance and climatic regimes.

Open book with a bar chart on left page and line graph and lines simulating text on the right page

Greater sage-grouse nesting and brood-rearing microhabitat in Nevada and California— Spatial variation in selection and survival patterns

View report.

This report evaluated the nesting and brood-rearing microhabitat factors that influence selection and survival patterns in the Great Basin using a large dataset of microhabitat characteristics from study areas spanning northern Nevada and a portion of northeastern California from 2009 to 2016. The spatial and temporal coverage of the dataset provided a powerful opportunity to evaluate microhabitat factors important to sage-grouse reproduction, while also considering habitat variation associated with different climatic conditions and areas affected by wildfire. The summary statistics for numerous microhabitat factors, and the strength of their association with sage-grouse habitat selection and survival, are provided in this report to support decisions by land managers, policy-makers, and others with the best-available science in a timely manner.

Open book with a bar chart on left page and line graph and lines simulating text on the right page

Using object-based image analysis to conduct high-resolution conifer extraction at regional spatial scales

View report.

For this mapping process across the entire mapping extent, four sets of products are available, including (1) a shapefile representing accuracy results linked to mapping subunits; (2) binary rasters representing conifer presence or absence at a 1 × 1 m resolution; (3) a 30 × 30 m resolution raster representing percentages of conifer canopy cover within each cell from 0 to 100; and (4) 1 × 1 m resolution canopy cover classification rasters derived from a 50-m-radius moving window analysis. The latter two products can be reclassified in a geographic information system (GIS) into user-specified bins to meet different objectives, which include approximations for phases of encroachment. These products complement, and in some cases improve upon, existing conifer maps in the Western United States, and will help facilitate sage-grouse habitat management and sagebrush ecosystem restoration.

Open book with a bar chart on left page and line graph and lines simulating text on the right page

Assessment of aspen ecosystem vulnerability to climate change for the Uinta-Wasatch-Cache and Ashley National Forests, Utah

View report.

In this report, literature-based information and expert elicitation are used to define (a) components of sensitivity and exposure to climate change and (b) the capacity of these ecosystems to adapt to expected changes. Aspen ecosystems benefit from fire and quickly reproduce. Yet, aspen trees are susceptible to drought and heat that is projected to become more frequent and intense in the future. Some aspen-associated plant and animal species may benefit from the expected changes in disturbance regimes and stand structure, while others may experience population reductions or stress as a result of drought and heat. Overall, vulnerability is defined as moderate because although persistence of aspen ecosystems is likely, a dynamic spatial and temporal response to climate change is expected.

Open book with a bar chart on left page and line graph and lines simulating text on the right page

Climate change and wildfire effects in aridland riparian ecosystems: An examination of current and future conditions

View report.

In this report, we review the ecohydrology of southwestern streams and share results from our study sites along the Middle Rio Grande to describe effects of hydrological changes, wildfire, and invasions on plant communities and riparian-nesting birds. We also examine climate change projections and output from population models to gauge the future of aridland riparian ecosystems in an increasingly arid Southwest.

A closed bound booklet with binoculars

Prescribed fire complexity rating system guide

View the guide.

This guide establishes interagency prescribed fire complexity analysis standards. The analysis provides a focused, subjective assessment by qualified prescribed fire burn bosses that is evaluated and approved by Agency Administrators, and provides insight and improves understanding of the significant risks associated with prescribed fire. The analysis:

  • Provides decision support that highlights the risk to values associated with prescribed fire implementation.
  • Identifies the technical difficulty (complexity) of managing the risk to values.
  • Informs the complexity rating determination of high, moderate, or low for a prescribed fire.
  • Identifies prescribed fire plan elements that may pose special problems or concerns.
A closed bound booklet with binoculars

Interagency prescribed fire planning and implementation procedures guide

View the guide.

The Interagency Prescribed Fire Planning and Implementation Procedures Guide establishes national interagency standards for the planning and implementation of prescribed fire. These standards:

  • Describe what is minimally acceptable for prescribed fire planning and implementation.
  • Provide consistent interagency guidance, common terms and definitions, and standardized procedures.
  • Make clear that firefighter and public safety is the first priority.
  • Ensure that risk management is incorporated into all prescribed fire planning and implementation.
  • Support safe, carefully planned, and cost-efficient prescribed fire operations.
  • Support use of prescribed fire to reduce wildfire risk to communities, municipal watersheds and other values, and to benefit, protect, maintain, sustain, and enhance natural and cultural resources.
  • Support use of prescribed fire to restore natural ecological processes and functions, and to achieve land-management objectives.

Narrow your search

Stay Connected