Research and Publications
View paper.
This Association for Fire Ecology position paper is an organization-wide initiative with two objectives: to determine the prevalence of these two issues throughout the profession, including management, education, and research; and to provide a set of principles and actions that are strongly recommended for implementation in order to foster organizational cultures of respect, equity, and parity.
View article.
This KQED Science article indicates that since 1600, the way humans have used land in the Sierra has had more effect on fire behavior than climate change. Valerie Trouet, associate professor of dendrochronology at the University of Arizona and lead coauthor of a study about humans and fire, suggests that land managers and owners can affect fire behavior through activities that make forests more resilient.
View article.
In this study, researchers concluded that variability in tree regeneration after disturbance can dampen and delay future disturbance by breaking spatiotemporal synchrony on the landscape. This highlights the importance of fostering landscape variability in the context of ecosystem management given changing disturbance regimes.
View abstracts.
Abstracts of recent publications on climate change and land management in the West. Prepared by Louisa Evers, Science and Climate Change Coordinator, Bureau of Land Management, Oregon-Washington State Office.
View report.
This report makes the case that forest restoration should be at least equal to other land management priorities because large-scale restoration is necessary for the sake of forest ecosystem integrity now and into the future. Another proposal is to switch the “default” rule in federal planning documents that currently have to “justify” managed wildland fire; instead, U.S. federal agencies should be required to disclose the long-term ecological impacts of continued fire suppression.
View report
This report evaluated how changes in climate in the United States would lead to changes by the middle and the end of the current century in annual spending to suppress wildfires on USDA Forest Service (FS) and Department of the Interior (DOI) managed lands.
To do this, researchers developed a two-stage model. In the first stage, we analyzed the historical relationships between area burned on FS and DOI lands and maximum daily temperatures and other variables. In the second stage, we analyzed historical relationships between area burned and suppression spending.
Then, using projections of climate obtained from general circulation models, we projected area burned, and used this projection in our second stage model to project spending on suppression. All spending projections were done with constant 2014 dollars. We made projections for mid-century (2041-2059) and late-century (2081-2099). Uncertainty in the area burned and suppression spending was quantified using Monte Carlo simulation methods, incorporating parametric uncertainty from the two stage models and climate uncertainty from the alternative climate projections.
Results show that median area burned on DOI lands is projected to increase, compared to the amount observed between 1995 and 2013, by 99% by mid-century and by 189% by late-century. For FS lands, the increases are projected to be 123% by mid-century and 221%, respectively. Given such changes in area burned, DOI spending is projected to increase by 45% by mid-century and by 72% by late-century. For the FS, annual spending is projected to rise by 117% and 192%, respectively. Such changes would entail an increase in dollars spent in total across both agencies from a historical average of $1.33 billion to a projected $2.63 billion in mid-century and $3.47 billion by late-century.
View article.
In this study, field sampling and analysis were conducted across environmental gradients following the 2007 Tongue-Crutcher Wildfire in southwestern Idaho to determine the conditions most influential in post-fire vegetation recovery patterns. Duff depth and fire severity were determined to be the most influential factors affecting post-fire vegetation response.
View article.
This study found that higher moss cover will be achieved quickly with the addition of organic matter and when moss fragments originate from sites with a climate that is similar to that of the restoration site.
View article.
Collectively, the data analyzed in this study demonstrate that good condition ungrazed Wyoming big sagebrush plant communities exhibited resilience following fire and maintained a native-dominated mosaic of shrubs, bunchgrasses, and forbs. Further, unburned control plots were dominated by woody vegetation and exhibited losses in herbaceous understory, possibly indicating that they are outside of their natural fire return interval.
View report.
This synthesis examines the fundamental spatial and temporal disconnects between the specific policies that have been crafted to address our wildfire challenges. The biophysical changes in fuels, wildfire behavior, and climate have created a new set of conditions for which our wildfire governance system is poorly suited to address. To address these challenges, a reorientation of goals is needed to focus on creating an anticipatory wildfire governance system focused on social and ecological resilience. Key characteristics of this system could include the following: (1) not taking historical patterns as givens; (2) identifying future social and ecological thresholds of concern; (3) embracing diversity/heterogeneity as principles in ecological and social responses; and (4) incorporating learning among different scales of actors to create a scaffolded learning system.