Research and Publications
View article.
This study provides quantitative evidence linking long-term declines of sage-grouse to chronic effects of wildfire. Projected declines may be slowed or halted by targeting fire suppression in remaining areas of intact sagebrush with high densities of breeding sage-grouse.
View abstracts.
Abstracts of Recent Papers on Climate Change and Land Management in the West, Prepared by Louisa Evers, Science Liaison and Climate Change Coordinator, BLM, OR-WA State Office.
View report.
This report is a synthesis of current knowledge on the effects of wildfire and fuels treatments in riparian areas of the interior western United States, and includes the following: (1) a literature review of fire effects on riparian and aquatic characteristics and functions, provided as background for considering the need and potential impacts of fuel treatments; (2) a review of the potential effects of prescribed fire and mechanical treatments on riparian and aquatic resources and biota; (3) results of an online survey of resource managers, summarizing information about proposed and completed fuel reduction projects in riparian areas and wetlands in the interior west; (4) suggestions for pre- and post project-level monitoring for riparian fuels projects; and (5) a presentation of case studies, describing riparian fuel treatments with different objectives and methods.
Read article.
This article reviews trends in aspen science and management, particularly in Utah and highlights recent studies continuing the tradition to keep rangeland managers informed of important developments, focusing on aspen functional types, historical cover change and climate warming, ungulate herbivory, and disturbance interactions.
View article.
Findings of this study supports other studies reporting negative impacts of oil and gas development on sage-grouse populations and our modeling approach allowed us to make inference to a longer time scale and larger spatial extent than in previous studies. In addition to sage-grouse, development may also negatively affect other sagebrush-obligate species, and active management of sagebrush habitats may be necessary to maintain some species.
View article.
This study found two levels of hierarchical genetic subpopulation structure. These subpopulations occupy significantly different elevations and are surrounded by divergent vegetative communities with different dominant subspecies of sagebrush, each with its own chemical defense against herbivory. We propose five management groups reflective of genetic subpopulation structure. These genetic groups are largely synonymous with existing priority areas for conservation. On average, 85.8 % of individuals within each conservation priority area assign to a distinct subpopulation. Our results largely support existing management decisions regarding subpopulation boundaries.
View manual.
This technical manual provides regional accounts of historical and current uses of fire, and then discusses fire effects on wildlife and the challenges of using prescribed fire in each system.
View report.
The Integrated Rangeland Fire Management Strategy outlined the need for coordinated, science-based adaptive management to achieve long-term protection, conservation, and restoration of the sagebrush (Artemisia spp.) ecosystem. A key component of this management approach is the identification of knowledge gaps that limit implementation of effective strategies to meet current management challenges. The tasks and actions identified in the Strategy address several broad topics related to management of the sagebrush ecosystem. This science plan is organized around these topics and specifically focuses on fire, invasive plant species and their effects on altering fire regimes, restoration, sagebrush and greater sage-grouse (Centrocercus urophasianus), and climate and weather.