Research and Publications
Read abstracts.
Abstracts of Recent Papers on Climate Change and Land Management in the West, Prepared by Louisa Evers, Science Liaison and Climate Change Coordinator, BLM, OR-WA State Office.
View article.
This study used a genecological approach to explore genetic variation for survival in Artemisia tridentata (big sagebrush). It found evidence of adaptive genetic variation for survival. Plants from areas with the coldest winters had the highest levels of survival, while populations from warmer and drier sites had the lowest levels of survival. Survival was lowest, 36%, in the garden that was prone to the lowest minimum temperatures. These results suggest the importance of climatic driven genetic differences and their effect on survival. Understanding how genetic variation is arrayed across the landscape, and its association with climate can greatly enhance the success of restoration and conservation.
View article.
This study used graph theory, representing priority areas as spatially distributed nodes interconnected by movement corridors, to understand the capacity of priority areas to function as connected networks in the Bi-State, Central, and Washington regions of the greater sage-grouse range. The Bi-State and Central networks were highly centralized; the dominant pathways and shortest linkages primarily connected a small number of large and centrally located priority areas. These priority areas are likely strongholds for greater sage-grouse populations and might also function as refugia and sources.
View article.
This study measured aboveground C pools and fluxes at leaf, soil, and ecosystem scales over a single growing season in plots that had 200 mm of supplemental precipitation added in either winter or summer for the past 21 years, in shrub- and exotic-bunchgrass-dominated garden plots. In general, ecosystem C uptake and long-term biomass accumulation were greater in winter- and summer-irrigated plots compared to control plots in both vegetation communities.
View bulletin.
This bulletin summarizes recent research on biological soil crusts, which are a complex of microscopic organisms growing on the soil surface in many arid and semi-arid ecosystems. These crusts perform the important role of stabilizing soil and reducing or eliminating water and wind erosion. One of the largest threats to biological soil crusts in the arid and semi-arid areas of the western United States is mechanical disturbance from vehicle traffic and grazing. The spread of the annual invasive cheatgrass has increased the fuel load in areas that previously would not carry a fire, posing a potentially widespread and new threat to this resource.
View report.
This study adapted and applied four rangeland health indicators to data compiled by the U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station’s Forest Inventory and Analysis (FIA) program for research locations on the Fishlake National Forest in central Utah. These data can be used by local forest managers to determine the health status of the local forest and to identify the proportion of sites that may be functioning at risk.
View article.
This study used public land records to characterize livestock grazing across Wyoming, USA, and we used greater sage-grouse (Centrocercus urophasianus) as a model organism to evaluate responses to livestock management. The study found grazing can have both positive and negative effects on Sage-grouse populations depending on the timing and level of grazing. Sage-grouse populations responded positively to higher grazing levels after peak vegetation productivity, but populations declined when similar grazing levels occurred earlier, likely reflecting the sensitivity of cool-season grasses to grazing during peak growth periods.
View article.
This study analyzed data sets from previous and ongoing studies across the Great Basin characterizing cover response of perennial and annual forbs that are consumed by sage grouse to mechanical, prescribed fire, and low-disturbance fuel reduction treatments. Annual forbs favored by sage grouse benefited most from prescribed fire treatments with smaller increases following mechanical and fuel reduction treatments.
View handbook.
This handbook walks managers and practitioners through a number of site-specific decisions managers face before selecting the appropriate type of restoration. This site-level decision tool for restoration of sagebrush steppe ecosystems is organized in nine steps.
- Step 1 describes the process of defining site-level restoration objectives.
- Step 2 describes the ecological site characteristics of the restoration site. This covers soil chemistry and texture, soil moisture and temperature regimes, and the vegetation communities the site is capable of supporting.
- Step 3 compares the current vegetation to the plant communities associated with the site State and Transition models.
- Step 4 takes the manager through the process of current land uses and past disturbances that may influence restoration success.
- Step 5 is a brief discussion of how weather before and after treatments may impact restoration success.
- Step 6 addresses restoration treatment types and their potential positive and negative impacts on the ecosystem and on habitats, especially for greater sage-grouse. We discuss when passive restoration options may be sufficient and when active restoration may be necessary to achieve restoration objectives.
- Step 7 addresses decisions regarding post-restoration livestock grazing management.
- Step 8 addresses monitoring of the restoration; we discuss important aspects associated with implementation monitoring as well as effectiveness monitoring.
- Step 9 takes the information learned from monitoring to determine how restoration actions in the future might be adapted to improve restoration success.