Research and Publications

Synthesis/Technical Report icon

Evidence for lack of a fuel effect on forest and shrubland fire rates of spread under elevated fire danger conditions: Implications for modelling and management

View synthesis.

This review and analysis of the relevant scientific literature on the subject suggest that fuel characteristics have a gradual diminishing effect on the rate of fire spread in forest and shrubland fuel types with increasing fire danger, with the effect not being observable under extreme fire danger conditions. Empirical-based fire spread models with multiplicative fuel functions generally do not capture this effect adequately. The implications of this outcome on fire spread modelling and fuels management are discussed.

Journal article icon

The historic, but not historically unprecedented, 2020 wildfires in the Pacific Northwest, USA

View article.

Reports from the early 1900s, along with paleo- and dendro-ecological records, indicate similar and potentially even larger wildfires over the past millennium, many of which shared similar seasonality (late August/early September), weather conditions, and even geographic locations. Consistent with the largest historical fires, strong east winds and anomalously dry conditions drove the rapid spread of high-severity wildfire in 2020. We found minimal difference in burn severity among stand structural types related to previous management in the 2020 fires. Adaptation strategies for similar fires in the future could benefit by focusing on ignition prevention, fire suppression, and community preparedness, as opposed to fuel treatments that are unlikely to mitigate fire severity during extreme weather. While scientific uncertainties remain regarding the nature of infrequent, high-severity fires in westside forests, particularly under climate change, adapting to their future occurrence will require different strategies than those in interior, dry forests.

Journal article icon

Projecting future fire regimes in a semiarid watershed of the inland northwestern US

View article.

This study used a coupled ecohydrologic and fire regime model to examine how climate change and CO2 scenarios influence fire regimes. In this semiarid watershed, we found an increase in burned area and burn probability in the mid-21st century (2040s) as the CO2 fertilization effect on vegetation productivity outstripped the effects of climate change-induced fuel decreases, resulting in greater fuel loading. However, by the late-21st century (2070s), climatic warming dominated over CO2 fertilization, thus reducing fuel loading and burned area. Fire regimes were shown to shift from flammability- to fuel-limited or become increasingly fuel-limited in response to climate change. We identified a metric to identify when fire regimes shift from flammability- to fuel-limited: the ratio of the change in fuel loading to the change in its aridity. The threshold value for which this metric indicates a flammability versus fuel-limited regime differed between grasses and woody species but remained stationary over time. Our results suggest that identifying these thresholds in other systems requires narrowing uncertainty in exogenous drivers, such as future precipitation patterns and CO2 effects on vegetation.

Factsheet/brief icon

Winter burning opportunities in the Sierra Nevada

View fact sheet.

With narrowing and potentially non-existent opportunities during other times of year, winter may currently be the most realistic and advantageous time to conduct prescribed burns. This study evaluated the effectiveness and feasibility of winter burning to demonstrate its potential utility in mixed conifer forests.

Journal article icon

With power comes responsibility – A rangelands perspective on forest landscape restoration

View article.

Tree planting has long been promoted to avert climate change and has received renewed impetus in recent years with the Bonn Challenge and related forest restoration initiatives guided by the forest and landscape restoration (FLR) framework. Much of the focus for reforestation and afforestation is on developing countries in Africa, Asia and South America, where large areas of rangelands in drylands and grassy biomes are portrayed as “degraded,” “unused,” and in need of more trees. This perception is rooted in persistent theories on forests and desertification that widely shaped colonial policy and practice and remain influential in today’s science-policy frameworks. From a rangelands perspective, the global FLR thrust raises two main concerns. First, inappropriate understandings of the ecology of drylands and grassy biomes encourage afforestation, grazing restriction and fire suppression, with negative impacts on hydrology, carbon storage, biodiversity, livestock production and pastoral livelihoods. Second, their target-driven approach requires large-scale afforestation and massive funding to achieve. Nearly half of the area pledged to the Bonn Challenge is in fact destined for forestry and other commercial plantations, which threaten pastoral livelihoods and cause ecological damage while having very limited potential to mitigate climate change. As the officially endorsed framework of the Bonn Challenge and related global restoration initiatives, FLR has become a powerful instrument for guiding global restoration efforts and funding. Its proponents have a responsibility to ensure that the framework is evidence-based and underpinned by appropriate ecological models for different ecoregions.

Synthesis/Technical Report icon

Sagebrush Conservation Strategy—Challenges to sagebrush conservation

View report.

This “Sagebrush Conservation Strategy—Challenges to Sagebrush Conservation,” is an overview and assessment of the challenges facing land managers and landowners in conserving sagebrush ecosystems. This strategy is intended to provide guidance so that the unparalleled collaborative efforts to conserve the iconic greater sage-grouse (Centrocercus urophasianus) by State and Federal agencies, Tribes, academia, nongovernmental organizations, and stakeholders can be expanded to the entire sagebrush biome to benefit the people and wildlife that depend on this ecosystem. This report is organized into 3 parts.

Part I. Importance of the Sagebrush Biome to People and Wildlife; Part II. Change Agents in the Sagebrush Biome—Extent, Impacts, and Effort to Address Them; and Part III. Current Conservation Paradigm and Other Conservation Needs for Sagebrush

Journal article icon

Addressing the transboundary, uncertain, and contested aspects of wildfire

View article.

Transboundary risk requires collaborative governance that attends to the distribution of power, authority, and capacity across the range of actors relevant to particular fire-prone landscapes. Wildfire is also changing in unprecedented ways and multiple, interacting uncertainties make predicting future wildfires difficult. Anticipatory governance can build our capacity to integrate uncertainty into wildfire decision-making and manage risk in proactive ways. Finally, competing interests and values mean that trade-offs are inherent to the wildfire problem. Risk governance links science and society through deliberative, participatory processes that explicitly navigate tradeoffs and build legitimacy for actions to address wildfire risk. Governance approaches that better target the nature of the wildfire problem will improve our ability to coexist with fire today and in the future.

Journal article icon

Cognition of feedback loops in a fire-prone social-ecological system

View article.

We evaluated the prominence and function of feedback loops embedded in cognitive maps—beliefs about patterns of causal relationships that drive system dynamics—elicited from a diverse cross-section of stakeholders in a fire-prone region in the U.S. West. We demonstrate that cognition of feedback loops is rare among individuals, but increasingly prominent within aggregations of cognitive maps, which underscores the importance of collaborative decision-making. Our analysis further reveals a bias toward perception of amplifying feedback loops and of loops in which management actions result in desirable outcomes, which points to areas where progress may be made in reforming wildfire risk governance.

Factsheet/brief icon

Oregon wildfire smoke communications and impacts: An evaluation of the 2020 wildfire season

View fact sheet.

Oregon Health Authority and the University of Oregon partnered to conduct a survey-based evaluation of wildfire smoke communications and impacts experienced by Oregon residents during the 2020 wildfire season. The purpose of this survey was to (1) understand how Oregonians respond to wildfire smoke and (2) provide an open-source evaluation tool and data to support wildfire smoke communication practitioners in Oregon.

Journal article icon

Forest management under uncertainty: Influence of management versus climate change and wildfire in the Lake Tahoe Basin

View article.

We focused on three metrics that are important for forest management objectives for the area: forest carbon storage, area burned at high severity, and total area burned by wildfire. Management explained a substantial amount of variance in the short term for area burned at high severity and longer term carbon storage, while climate explained the most variance in total area burned. Our results suggest that simulated extensive management activities will not meet all the desired management objectives. Both the extent and intensity of forest management will need to increase significantly to keep pace with predicted climate and wildfire conditions.

Narrow your search

Stay Connected