Research and Publications
View article.
Prebunking and debunking misinformation are first steps toward ensuring that policy makers, journalists, judges, members of the public, and elected officials are skeptical of weakly supported scientific information, which can hinder effective wildfire management.
View article.
Cows were fitted with VF collars (calves not collared) that use Global Positioning System positioning to contain cattle inside fuel break boundaries and record animal locations at 5-min intervals. End-of-trial forage utilization was 48.5% ± 3.7% and 5.5% ± 0.7% for areas inside and outside of the fuel break, respectively. Daily percentage of cattle locations inside the fuel break was initially > 94% but declined to approximately 75% by the end of the trial. Percentage daily locations of dry cows and cow/calf pairs inside the fuel break was 98.5% ± 0.5% and 80.6% ± 1.1%, respectively (P < 0.001). Our data suggest virtual fencing can be a highly effective method of concentrating grazing to reduce herbaceous fuel biomass within linear fuel breaks. Efficacy of this method could be substantially impacted by use of dry versus cow/calf pairs.
View article.
It is clear that the state of knowledge based on empirical evidence is at its infancy. This is likely because of the vast challenges associated with designing and implementing sampling designs that account for combinations of spatial and temporal configurations prior to wildfire occurrence. We also suspect part of the reason empirical evidence is lacking is because the distinction between site-level and landscape-level effects is not well recognized in the literature. All papers used the term landscape, but rarely defined the landscape, and some specified identifying landscape-level effects that were truly site-level effects. Future research needs to develop innovative ways to interpret the role of fuel treatments at the landscape level to provide insight on strategic designs and approaches to maximize fuel treatment effectiveness.
View article.
Seeds were captured across the range of tested dispersal distances, up to a maximum distance of 26 m from seed-source plants, although dispersal to the furthest traps was variable. Seed dispersal was better explained by transect heterogeneity than by patch or site heterogeneity (transects were nested within patch within site). The number of seeds captured varied from a modelled mean of ~13 m -2 adjacent to patches of seed-producing plants, to nearly none at 10 m from patches, standardized over a 49-day period. Maximum seed-dispersal distances on average were estimated to be 16-m according to a novel modelling approach using a “latent” dispersal distance based on seed trapping heights.
Modeling fire spread in sagebrush steppe using FARSITE: Improving input data and simulation accuracy
View article.
Using RAP to inform pre-fire FBFM selection increased the accuracy of FARSITE simulations compared to parameterization with the standard LANDFIRE FBFM maps, in sagebrush steppe. Additionally, the crosswalk method appeared to have regional generalizability. Flanking and backfires were the primary source of disagreements between simulated and observed fire spread in FARSITE, which are sources of error that may require modeling of lateral heterogeneity in fuels and fire processes at finer scales than used here.
View report.
A spatial overlap analysis was performed and highlighted 45.8 million acres of shared priorities among existing conservation frameworks to help anchor and guide collaborative landscape-scale conservation of areas that still have no to low threats. This information is critical to provide context for decisions about the volume and nature of conservation actions and funding requirements.
View the infographic.
Nonnative species can be introduced or exacerbated by fire and fuels treatments. This resource describes how this can happen and what can be done to minimize the occurrence of nonnative species on burned sites or following fuels management.
View factsheet.
Fire can be a useful tool for promoting migrations of shade-intolerant wind dispersed species such as aspen. Aspen successfully established in burned areas far from seed sources, so managers may choose to focus attention on other species in postburn reforestation.
View synthesis.
Maximizing the effectiveness of fuel treatments at the landscape scale is a key research and management need given the inability to treat all areas at risk from wildfire, and there is a growing body of scientific literature assessing this need. We synthesized existing scientific literature on landscape-scale fuel treatment effectiveness in North American ecosystems through a systematic literature review. We identified 127 studies that addressed this topic using one of three approaches: simulation modeling, empirical analysis, or case studies. Of these 127 studies, most focused on forested landscapes of the western United States. Together, they generally provided evidence that fuel treatments reduced negative outcomes of wildfire and in some cases promoted beneficial wildfire outcomes, although these effects diminished over time following treatment and were influenced by factors such as weather conditions at the time of fire. The simulation studies showed that fuel treatment extent, size, placement, timing, and prescription influenced the degree of effectiveness.
View article.
After they have been delineated, PODs are essentially big boxes on the landscape that illustrate where fire could potentially be contained. Collaborators can then use CWPPs and other planning processes to fill those boxes with a wide variety of local and statewide spatial data about expected fire behavior, homes, infrastructure, and other values at risk to inform where resources should be expended to protect community values. Because PODs delineate where fires are likely to be contained, they can help operationalize CWPPs. Like CWPPs, PODs institutionalize knowledge and can be used to create a variety of maps and spatial data products. However, the real value of PODs and CWPPs comes from the collaborative processes used to create them, the interagency coordination and conversations they facilitate, and their power as communication tools between communities, land management agencies, and other stakeholders. By incorporating the PODs framework into a new or updated CWPP, a community is able to incorporate the latest science and use an operationally based planning framework that is broadly adopted and supported by federal agencies.