Research and Publications

Journal article icon

Actionable social science can guide community level wildfire solutions. An illustration from North Central Washington, US

View article.

In this study we illustrate the value of social data compiled at the community scale to guide a local wildfire mitigation and education effort. The four contiguous fire-prone study communities in North Central Washington, US, fall within the same jurisdictional fire service boundary and within one US census block group. Across the four communities, similar attitudes toward wildfire were observed. However, significant differences were found on the measures critical to tailoring wildfire preparation and mitigation programs to the local context such as risk mitigation behaviors, reported barriers to mitigation, and communication preferences across the four communities.

Journal article icon

Comparing risk-based fuel treatment prioritization with alternative strategies for enhancing protection and resource management objectives

View article.

In general, we find that treating near housing units can provide the greatest level of protection relative to treating more remote wildlands to reduce transmission potential. Treating on federal lands to reduce federal transmission was highly effective at reducing exposure from federal fires and at expanding opportunities for beneficial fire but contributed comparatively little to reducing housing exposure from all fires. We find that treatment extents as low as 2.5–5% can yield significant benefits with spatially optimized strategies, whereas the random strategy did not perform comparably until reaching a much larger treatment extent. Increasing risk tolerance for housing exposure expanded the area suitable for managed fire, while decreasing risk tolerance for beneficial fire opportunity and flame length probability shrunk the area suitable for managed fire.

Journal article icon

An assessment of American Indian forestry research, information needs, and priorities

View article.

This study expands on a 2011 tribal research needs assessment with a survey to identify tribal natural resource professionals’ research needs, access to research findings, and interest in participating in research. Information needs identified in our survey includes forest health, water quality, culturally significant species, workforce and tribal youth development, cultural importance of water, and invasive species. Additionally, postfire response and valuation, resilience and long-term forestry, protecting and curating tribal data, and Indigenous burning were more important research needs for tribal members than for nontribal members. This study can inform forestry research planning efforts and establish research priorities and collaborations that are aligned with needs identified by tribal natural resource managers.

Journal article icon

Tree mortality response to drought-density interactions suggests opportunities to enhance drought resistance

View article.

Our results imply that a 50% reduction in forest basal area could reduce drought-driven tree mortality by 20%–80%. The largest impacts of density reduction are seen in areas with high current basal area and places that experience high temperatures and/or severe multiyear droughts. These interactions between competition and drought are critical to understand past and future patterns of tree mortality in the context of climate change, and provide information for resource managers seeking to enhance dry forest drought resistance.

Journal article icon

Comparing smoke emissions and impacts under alternative forest management regimes

View article.

Our results suggest that emissions from wildfires will substantially increase in future decades; however, increased levels of forest thinning could substantially reduce those emissions and harmful health impacts from large wildfires. We also found that increased use of prescribed burning could reduce the health impacts associated with large wildfires but would also increase the frequency of low levels
of emissions. Furthermore, the modeling results suggested that individual prescribed fires could have substantial health impacts if dispersion conditions are unfavorable. Our results suggest that increased management is likely to yield important benefits given expected increases in wildfire activity associated with climate change. However, there remain many challenges to projecting the effects of alternative
management regimes, especially ones that involve substantial increases in intentional burning.

Synthesis/Technical Report icon

True cost of wildfire in the western US: 2022 report

View report.

This report describes the full range of costs associated with wildland fire in the Western United States (U.S.) to help inform leaders and policymakers working to improve wildfire response and mitigation. Wildfire cost information has, in the past, primarily focused on suppression costs and structure losses; however, as this report shows, there are many other types of costs relating to values such as human health, water supply, transportation, the labor market, and local economics, among others. These less-recognized costs are massive in aggregate.

Synthesis/Technical Report icon

Economic value of fuel treatments: Review of the recent literature for fuel treatment planning

View article.

Most studies find that fuel treatments are not financially viable for land management agencies based on revenue generated from forest products, biomass, or carbon credits at the time of implementation. Fuel treatments also tend to not be financially viable based on future management costs savings (fire suppression and rehabilitation costs) or averted losses in forest products from wildfire over the lifespan of treatment effectiveness. Similarly, most studies that consider benefits beyond those accruing to land management agencies find that the benefits from any single category (e.g., damage to structures and infrastructure, critical watersheds, air quality, or ecosystem values) are not sufficient to offset treatment costs. Overall, the recent literature suggests that fuel treatment projects are more likely to have benefits that exceed costs if they generate benefits in multiple categories simultaneously. The literature also documents tremendous variability in benefits and costs across regions and between projects within regions, which poses a challenge to reaching general conclusions about the benefits and costs of fuel treatments at programmatic scales, and suggests that practitioners should proceed with caution when trying to extrapolate the benefits and costs for a prospective fuel treatment project from estimates reported in the previous literature.

Journal article icon

Biogeographical patterns of fire characteristics across the contiguous US

View article.

Human-dominated pyromes (85% mean anthropogenic ignitions), with moderate fire size, area burned, and intensity, covered 59% of CONUS, primarily in the East and East Central. Physically dominated pyromes (47% mean anthropogenic ignitions) characterized by relatively large (average 439 mean annual ha per 50 km pixel) and intense (average 75 mean annual megawatts/pixel) fires occurred in 14% of CONUS, primarily in the West and West Central. The percent of anthropogenic ignitions increased over time in all pyromes (0.5–1.7% annually). Higher fire frequency was related to smaller events and lower FRP, and these relationships were moderated by vegetation, climate, and ignition type. Notably, a spatial mismatch between our derived modern pyromes and both ecoregions and historical fire regimes suggests other major drivers for modern U.S. fire patterns than vegetation-based classification systems. This effort to delineate modern U.S. pyromes based on fire observations provides a national-scale framework of contemporary fire regions and may help elucidate patterns of change in an uncertain future.

Journal article icon

Strategic partnerships to leverage small wins for fine fuels management

View article.

In this Research-Partnership Highlight, we argue that private-public partners in such settings must be strategic in their selection of tasks to generate “small wins” in order to build the trust, competency, and legitimacy needed to advance an approach for landscape-scale fine fuels management. We highlight a fine fuels reduction partnership consisting of public and private entities in southeastern Oregon that established a research and education project and applied dormant season grazing on three pastures within the Vale District Bureau of Land Management. We describe the impetus for the partnership, antecedents, strategic tactics, and ongoing learning and reflection used to revise processes. In this example, implementing dormant season grazing as a research and education project allowed the partners to assess the efficaciousness of the treatment, as well as the operational logistics and administrative competencies necessary to apply the treatment to manage fine fuels at broader scales. Because dormant season grazing may, in some instances, conflict with established practices and norms, small-scale projects such as this allow partners to refine understandings of the social and administrative conditions that make implementation possible. Generating small wins through projects such as this is a critical precursor for partnerships seeking to take on larger, more complex endeavors that involve increasing ecological, economic, and social uncertainty.

Journal article icon

Temporal mismatch in space use by a sagebrush obligate species after large-scale wildfire

View article.

We modeled seasonal habitat use by female greater sage-grouse in the Trout Creek Mountains of Oregon and Nevada, USA, to identify landscape characteristics that influenced sage-grouse habitat selection and to create predictive surfaces of seasonal use 1 and 7 years postfire. We developed three resource selection function models using GPS location data from 2013 to 2019 for three biologically distinct seasons (breeding, n = 149 individuals: 8 March–12 June; summer, n = 140 individuals: 13 June–20 October; and winter, n = 94 individuals: 21 October–7 March). For all seasons, by the fourth or fifth year postfire, sage-grouse selected for unburned patches more than all other burn severity patches and the use of unburned areas in comparison with burned areas increased through time. During the breeding season, sage-grouse selected for low-sagebrush -dominated ecosystems and areas with low biomass (normalized difference vegetation index). During summer, sage-grouse selected for areas with higher annual and perennial grasses and forb cover, and areas that had higher biomass. During winter, sage-grouse selected for areas of intact sagebrush on less rugged terrain. For the winter and breeding season, there was a positive linear relationship between annual grasses and forb cover through time. Seven years postfire (2019), the area predicted to have a high probability of use in each seasonal range decreased (breeding: 16.4%; summer: 12.2%; and winter: 4.2%), while the area predicted to have low or low-medium probability of use increased (breeding: 14.5%; summer: 22.5%; and winter: 22.8%) when compared to the first year following the wildfire (2013). Our results demonstrated a 4- to 5-year time lag before female sage-grouse adapted to a disturbed landscape began avoiding burned areas more than intact, unburned habitats. This mismatch in ecological response may imply declines in habitat availability for sage-grouse and may destabilize population vital rates. Spatially explicit models can aid in identifying priority areas for restoration efforts and conservation actions to mitigate the impacts of future disturbances.

Narrow your search

Resource Types
No results found
Article / Book (903)
Synthesis / Tech Report (233)
Fact Sheet / Brief (209)
Field Guide (55)
Abstract (27)
Story Map (19)
Newsletter / Digest (17)
Resource Collection (11)
Bibliography (4)
Video (3)
Topic
No results found
Carbon (6)
Case Study (48)
Climate & Fire & Adaptation (166)
Decision Support (58)
Fire & Economics (31)
Fire Behavior (79)
Fire Communication & Education (98)
Fire Ecology & Effects (139)
Fire History (36)
Fire Policy (39)
Fire Regimes (81)
Fire Risk (36)
Firefighter Safety (39)
Fuels & Fuel Treatments (314)
Human Dimensions of Fire (64)
Invasive Species (230)
Landscape Analysis (71)
Monitoring (40)
Post-fire Environment & Management (109)
Rehabilitation (18)
Resistance & Resilience (74)
Restoration (232)
Sage-grouse (116)
Sagebrush (224)
Smoke (30)
Targeted Grazing (41)
Traditional Ecological Knowledge (16)
Weather Effects (42)
Wildland Urban Interface (76)

Stay Connected