Research and Publications
View report.
This “Sagebrush Conservation Strategy—Challenges to Sagebrush Conservation,” is an overview and assessment of the challenges facing land managers and landowners in conserving sagebrush ecosystems. This strategy is intended to provide guidance so that the unparalleled collaborative efforts to conserve the iconic greater sage-grouse (Centrocercus urophasianus) by State and Federal agencies, Tribes, academia, nongovernmental organizations, and stakeholders can be expanded to the entire sagebrush biome to benefit the people and wildlife that depend on this ecosystem. This report is organized into 3 parts.
Part I. Importance of the Sagebrush Biome to People and Wildlife; Part II. Change Agents in the Sagebrush Biome—Extent, Impacts, and Effort to Address Them; and Part III. Current Conservation Paradigm and Other Conservation Needs for Sagebrush
View article.
Transboundary risk requires collaborative governance that attends to the distribution of power, authority, and capacity across the range of actors relevant to particular fire-prone landscapes. Wildfire is also changing in unprecedented ways and multiple, interacting uncertainties make predicting future wildfires difficult. Anticipatory governance can build our capacity to integrate uncertainty into wildfire decision-making and manage risk in proactive ways. Finally, competing interests and values mean that trade-offs are inherent to the wildfire problem. Risk governance links science and society through deliberative, participatory processes that explicitly navigate tradeoffs and build legitimacy for actions to address wildfire risk. Governance approaches that better target the nature of the wildfire problem will improve our ability to coexist with fire today and in the future.
View article.
We evaluated the prominence and function of feedback loops embedded in cognitive maps—beliefs about patterns of causal relationships that drive system dynamics—elicited from a diverse cross-section of stakeholders in a fire-prone region in the U.S. West. We demonstrate that cognition of feedback loops is rare among individuals, but increasingly prominent within aggregations of cognitive maps, which underscores the importance of collaborative decision-making. Our analysis further reveals a bias toward perception of amplifying feedback loops and of loops in which management actions result in desirable outcomes, which points to areas where progress may be made in reforming wildfire risk governance.
View fact sheet.
Oregon Health Authority and the University of Oregon partnered to conduct a survey-based evaluation of wildfire smoke communications and impacts experienced by Oregon residents during the 2020 wildfire season. The purpose of this survey was to (1) understand how Oregonians respond to wildfire smoke and (2) provide an open-source evaluation tool and data to support wildfire smoke communication practitioners in Oregon.
View article.
We focused on three metrics that are important for forest management objectives for the area: forest carbon storage, area burned at high severity, and total area burned by wildfire. Management explained a substantial amount of variance in the short term for area burned at high severity and longer term carbon storage, while climate explained the most variance in total area burned. Our results suggest that simulated extensive management activities will not meet all the desired management objectives. Both the extent and intensity of forest management will need to increase significantly to keep pace with predicted climate and wildfire conditions.
View fact sheet.
Wildfire risk, species conservation, and ecosystem management all depend on seamless spatial data. LANDFIRE may already be supporting your mission if you have ever asked questions like these:
- What is the wildfire risk within a particular landscape?
- Where can I get data to evaluate fauna habitats?
- If ignited, how might a wildfire move through a particular landscape?
- How does the vegetation cover in one area compare with the vegetation in another area?
- How have disturbances in the past affected current forest conditions?
- What is the spatial distribution of a certain vegetation type?
- Where can I find spatial vegetation and structure data for all lands, regardless of ownership?
National LANDFIRE datasets can help answer all these questions for areas of interest within the United States and insular areas at the 30-meter pixel level. LANDFIRE is a Federal program that provides a suite of spatial datasets indicating areas of disturbance, vegetation and fuels distributions and structure, and historical conditions. Although LANDFIRE is the definitive dataset used by the interagency fire community for surface and canopy fuels, the program also maps more than 30 spatial datasets that can be used for a variety of purposes.
View article.
This study quantifies the climate drivers that influence wildfire and climate stress-driven tree mortality, including a separate insect-driven tree mortality, for the contiguous United States for current (1984–2018) and project these future disturbance risks over the 21st century. We find that current risks are widespread and projected to increase across different emissions scenarios by a factor of >4 for fire and >1.3 for climate-stress mortality. These forest disturbance risks highlight pervasive climate-sensitive disturbance impacts on US forests and raise questions about the risk management approach taken by forest carbon offset policies. Our results provide US-wide risk maps of key climate-sensitive disturbances for improving carbon cycle modeling, conservation and climate policy.
View report.
In developing this report, a cross-functional group of stakeholders and subject matter experts (SMEs) from across the nation convened to identify 33 challenges within 13 key WUI issues and develop recommendations to address each challenge. In total, 112 recommendations are presented. These recommendations address challenges in firefighter health and safety, public health and safety, evacuations, forest and rangeland health and resiliency, climate change, community planning and resiliency, infrastructure and utilities, communication strategy and engagement operations, socioeconomic impacts, recovery, emerging technology, data use and modeling, and risk management in wildland fire. The recommendations should be pursued together, forming a system of strategies that require urgent, sustained and actionable implementations. These recommendations are not quick fixes, but solutions for the long term. Leadership on and commitment to the implementation of these recommendations results in a safer America.
View article.
For wildfire risk mapping and for general purposes, WUI maps based on the 500-m neighborhood represent the original Federal Register definition of the WUI; these maps include clusters of buildings in and adjacent to wildlands and exclude remote, isolated buildings. Our approach for mapping the WUI offers flexibility and high spatial detail and can be widely applied to take advantage of the growing availability of high-resolution building footprint data sets and classification methods.
View brief.
Climate-driven changes in global temperatures and aridity are directly correlated with the decreasing interval between high-elevation fires. Fire activity is increasingly disproportionate at higher elevations than that of lower elevation forests in the Western United States. Studies documented an upslope advance of high-elevation fires of roughly 7.6 m (25 ft) per year. An additional 81,500 km2 (31,500 miles2) of the western United States forested regions were exposed to fires due to increased aridity between 1984 and 2017.