Research and Publications

Journal article icon

An escape route planning model based on wildfire prediction information and travel rate of firefighters

View article.

Compared with other models, the escape routes planned by the final improved model not only effectively avoid wildfires, but also provide relatively short travel time and reliable safety.  This study ensures sufficient safety margins for firefighters escaping in wildfire environments. The escape route model described in this study offers a broader perspective on the study of escape route planning.

Roadside Fuel Break in sagebrush

Review of fuel treatment effects on fuels, fire behavior, and ecological resilience in sagebrush ecosystems in the western US

View synthesis.

This review revealed tradeoffs in woody fuel treatments between reducing canopy fuels vs. increasing understory herbaceous vegetation (fuels) and fire behavior. In pinyon-juniper expansion areas, all treatments decreased crown fire risk. Prescribed fire and cut and broadcast burn treatments reduced woody fuels long-term but had higher risk of invasion. Mechanical treatments left understory vegetation intact and increased native perennial plants. However, cut and leave treatments increased downed woody fuel and high-intensity wildfire risk, while cut and pile burn and mastication caused localized disturbances and annual grass invasion. Ecological outcomes depended on ecological resilience; sites with warm and dry conditions or depleted perennial native herbaceous species experienced lower recovery and resistance to invasive annual grasses. In invasive annual grass dominated areas, high-intensity targeted grazing reduced fine fuels but required retreatment or seeding; in intact ecosystems with relatively low shrub cover, dormant season targeted grazing reduced fine fuel and thus fire spread. Preemergent herbicides reduced annual grasses with differing effects in warm and dry vs. cool and moist environments.

Journal article icon

Environmental health of wildland firefighters: a scoping review

View article.

Wildland firefighters are likely to experience heightened risks to safety, health, and overall well-being as changing climates increase the frequency and intensity of exposure to natural hazards. Working at the intersection of natural resource management and emergency response, wildland firefighters have multidimensional careers that often incorporate elements from disparate fields to accomplish the tasks of suppressing and preventing wildfires. Thus, they have distinctly different job duties than other firefighters (e.g., structural firefighters) and experience environmental health risks that are unique to their work. We conducted a systematic scoping review of scientific literature that addresses wildland firefighter environmental health. Our goal was to identify studies that specifically addressed wildland firefighters (as opposed to firefighters in a broader sense), geographic and demographic trends, sample sizes, patterns in analysis, and common categories of research.

Journal article icon

Guiding principles for transdisciplinary and transformative fire research

View article.

To advance transformative solutions to this complex fire challenge, we propose four principles for conducting transdisciplinary fire research: (1) embrace complexity, (2) promote diverse ways of knowing fire, (3) foster transformative learning, and (4) practice problem-centered research. These principles emerged from our experience as a group of early-career researchers who are embedded within and motivated by today’s complex fire challenge within British Columbia (BC), Canada. In this forum piece, we first describe the four principles and then apply the principles to two case studies: (1) BC, a settler-colonial context experiencing increased size, severity, and impacts of wildfires, and (2) our ECR discussion group, a space of collective learning and transformation. In doing so, we present a unique contribution that builds on existing efforts to develop more holistic fire research frameworks and demonstrates how application of these principles can promote transdisciplinary research and transformation towards coexistence with fire, from local to global scales.

Factsheet/brief icon

Rebuilding resiliency in a fire-ravaged landscape: South-central OR integrated post-fire resiliency strategy

View storymap.

Public and private landowners have come together to lay out a path for recovery. Major partners in the region are uniting behind a groundbreaking cross-jurisdictional approach to restore resilient forests in Oregon’s Klamath and Lake counties. The resulting strategy has become a national blueprint for post-wildfire recovery.

Journal article icon

A global outlook on increasing wildfire risk: Current policy situation and future pathways

View article.

The article analyses current wildfire policies in fire-prone countries, highlighting regional variations and the need for an integrated management strategy. It offers country-specific recommendations based on the participants viewpoints, for coordinated efforts to mitigate wildfire risks and promote sustainable forest management.

Factsheet/brief icon

Not just another cheatgrass: The ventenata invasion in the interior Northwest

View brief.

Invasive annual grasses have long been known to increase wildfire danger in shrublands and woodlands of the American West. Ventenata (Ventenata dubia) is one such grass. First reported in North America in 1952 in Washington state, it is now expanding into previously invasion- resistant forest landscapes. Unlike cheatgrass, another invasive grass, ventenata can grow in sparsely vegetated rocky meadows. These forest scablands, often embedded within a forested landscape, have historically served as natural fire breaks. Lacking sufficient fuels, the scablands usually stopped fire from spreading into neighboring fireprone forests. However, when ventenata invades scablands and other open areas, it can create a highly flammable bridge between adjacent forested areas and act as a “ fire conveyor belt” that facilitates the spread of fire across a landscape.

Journal article icon

Wildfire probability estimated from recent climate and fine fuels across the big sagebrush region

View article

Wildfire frequency varied significantly across the sagebrush region, and our statistical model represented much of that variation. Biomass of annual and perennial grasses and forbs, which we used as proxies for fine fuels, influenced wildfire probability. Wildfire probability was highest in areas with high annual forb and grass biomass, which is consistent with the well-documented phenomenon of increased wildfire following annual grass invasion. The effects of annuals on wildfire probability were strongest in places with dry summers. Wildfire probability varied with the biomass of perennial grasses and forbs and was highest at intermediate biomass levels. Climate, which varies substantially across the sagebrush region, was also predictive of wildfire probability, and predictions were highest in areas with a low proportion of precipitation received in summer, intermediate precipitation, and high temperature.

Journal article icon

Matching existing and future native plant materials to disturbance‐driven restoration needs

View article.

Assessing the appropriateness of existing native plant materials can both determine which seed source to utilize for restoration projects, and identify locations for which new seed sources need to be developed. Here, we demonstrate an approach to meet these needs. This method identifies areas of high restoration need based on disturbance patterns, assesses the regional suitability of existing native plant materials based on climate similarity, and highlights geographic (and climatic) gaps where existing materials are likely unsuitable and where plant material development projects can be prioritized. We examined 12 high priority restoration species across the Colorado Plateau, a 38‐million‐ha region of the Intermountain West, United States to test our methodological pipeline. Fifty‐four percent of the Colorado Plateau is disturbed by livestock grazing, wildfires that have burned in the past 20 years, or energy production from oil and gas wells, natural gas pipelines, and coal mines. Of the 28 commercially available plant materials for six of the focal species, only 3 have climate similarity that encompass more than 50% of the species modeled habitat on the Colorado Plateau. Across all commercial materials, most species (10 of 12) do not have any suitable plant material for 70% or more of their geographic range on the Colorado Plateau. Of those areas identified as not having any suitable plant materials, 47–56% are also disturbed. Our method provides usable, flexible protocols and spatially referenced data sources for optimizing the planning of new native plant materials in any region where restoration is needed and spatial data are available.

Journal article icon

Long-term efficacy of fuel reduction and restoration treatments in Northern Rockies dry forests

Fuel and restoration treatments seeking to mitigate the likelihood of uncharacteristic high-severity wildfires in forests with historically frequent, low-severity fire regimes are increasingly common, but long-term treatment  effects on fuels, aboveground carbon, plant community structure, ecosystem resilience, and other ecosystem attributes are understudied. We present 20-year responses to thinning and prescribed burning treatments commonly used in dry, low-elevation forests of the western United States from a long-term study site in the Northern Rockies that is part of the National Fire and Fire Surrogate Study. We provide a comprehensive synthesis of short-term (<4 years) and mid-term (<14 years) results from previous findings. We then place these results in the context of a mountain pine beetle (MPB; Dendroctonus ponderosae) outbreak that impacted the site 5–10 years post-treatment and describe 20-year responses to assess the longevity of restoration and fuel reduction treatments in light of the MPB outbreak. Thinning treatments had persistently lower forest density and higher tree  growth, but effects were more pronounced when thinning was combined with prescribed fire. The thinning +prescribed fire treatment had the additional benefit of maintaining the highest proportion of ponderosa pine (Pinus ponderosa) for overstory and regeneration. No differences in understory native plant cover and richness or exotic species cover remained after 20 years, but exotic species richness, while low relative to native species, was still higher in the thinning+prescribed fire treatment than the control

Narrow your search

Stay Connected