Research and Publications
View synthesis.
Maximizing the effectiveness of fuel treatments at the landscape scale is a key research and management need given the inability to treat all areas at risk from wildfire, and there is a growing body of scientific literature assessing this need. We synthesized existing scientific literature on landscape-scale fuel treatment effectiveness in North American ecosystems through a systematic literature review. We identified 127 studies that addressed this topic using one of three approaches: simulation modeling, empirical analysis, or case studies. Of these 127 studies, most focused on forested landscapes of the western United States. Together, they generally provided evidence that fuel treatments reduced negative outcomes of wildfire and in some cases promoted beneficial wildfire outcomes, although these effects diminished over time following treatment and were influenced by factors such as weather conditions at the time of fire. The simulation studies showed that fuel treatment extent, size, placement, timing, and prescription influenced the degree of effectiveness.
View article.
After they have been delineated, PODs are essentially big boxes on the landscape that illustrate where fire could potentially be contained. Collaborators can then use CWPPs and other planning processes to fill those boxes with a wide variety of local and statewide spatial data about expected fire behavior, homes, infrastructure, and other values at risk to inform where resources should be expended to protect community values. Because PODs delineate where fires are likely to be contained, they can help operationalize CWPPs. Like CWPPs, PODs institutionalize knowledge and can be used to create a variety of maps and spatial data products. However, the real value of PODs and CWPPs comes from the collaborative processes used to create them, the interagency coordination and conversations they facilitate, and their power as communication tools between communities, land management agencies, and other stakeholders. By incorporating the PODs framework into a new or updated CWPP, a community is able to incorporate the latest science and use an operationally based planning framework that is broadly adopted and supported by federal agencies.
View article.
To examine the short-term effects of wildfire on belowground processes in the northern Sierra Nevada, we collected soil samples along a gradient from unburned to high fire severity over 10 months following a wildfire. This included immediate pre- and post-fire sampling for many variables at most sites. While season and soil moisture did not substantially alter pH, microbial biomass, net N mineralization, and nitrification in unburned locations, they interacted with burn severity in complex ways to constrain N cycling after fire. In areas that burned, pH increased (at least initially) after fire, and there were non-monotonic changes in microbial biomass. Net N mineralization also had variable responses to wetting in burned locations. These changes suggest burn severity and precipitation patterns can interact to alter N cycling rates following fire.
View synthesis.
We synthesize insights needed to better address the long-standing challenges of innovation across disciplines to (i) promote coordinated research efforts; (ii) embrace different ways of knowing and knowledge generation; (iii) promote exploration of fundamental science; (iv) capitalize on the “firehose” of data for societal benefit; and (v) integrate human and natural systems into models across multiple scales. Fire science is thus at a critical transitional moment. We need to shift from observation and modeled representations of varying components of climate, people, vegetation, and fire to more integrative and predictive approaches that support pathways toward mitigating and adapting to our increasingly flammable world, including the utilization of fire for human safety and benefit. Only through overcoming institutional silos and accessing knowledge across diverse communities can we effectively undertake research that improves outcomes in our more fiery future.
View article.
Historical wildfire ignition locations and NOAA’s hourly time series of surface weather at 2.5 km resolution are used to drive ELMFIRE to produce wildfire hazards representative of the 2022 and 2052 conditions at 30 m resolution, with the future weather conditions scaled to the IPCC CMIP5 RCP4.5 model ensemble predictions. Winds and vegetation were held constant between the 2022 and 2052 simulations, and climate change’s impacts on the future fuel conditions are the main contributors to the changes observed in the 2052 results. Non-zero wildfire exposure is estimated for 71.8 million out of 140 million properties across CONUS. Climate change impacts add another 11% properties to this non-zero exposure class over the next 30 years, with much of this change observed in the forested areas east of the Mississippi River. “Major” aggregate wildfire exposure of greater than 6% over the 30-year analysis period from 2022 to 2052 is estimated for 10.2 million properties. The FSF-WFM represents a notable contribution to the ability to produce property-specific, climate-adjusted wildfire risk assessments in the US.
Access article.
Specifically, we examine the difference in wildfire probability in similar forests under different management regimes (federally managed vs. privately owned) in eleven western states from 1989–2016 and compare the magnitude of the management effect to the effect of climate variables. We find a greater probability of wildfires in federally managed forests than in privately owned forests, with a 127% increase in the absolute difference between the two management regimes over the 28 year time period. However, in 1989, federally managed forests were 2.67 times more likely to burn than privately owned forests, but in 2016, they were only 1.52 times more likely to burn. Finally, we find that the effect of the different management regimes is greater than the marginal (one-unit change) effect of most climate variables. Our results indicate that projections of future fire probability must account for both climate and management variables, while our methodology provides a framework for quantitatively comparing different drivers of change in complex social-ecological systems.
View article.
We organize our exploration of new horizons around three key areas, suggesting that PODs can enable climate-smart forest and fire management and planning, inform more agile and adaptive allocation of suppression resources, and enable risk-informed performance measurement. These efforts can be synergistic and self-reinforcing, and we argue that expanded application of PODs at local levels could enhance the performance of the broader wildland fire system. We provide rationales for each problem area and offer growth opportunities with attendant explanations and illustrations.
View article.
Cows were fitted with VF collars (calves not collared) that use Global Positioning System positioning to contain cattle inside fuel break boundaries and record animal locations at 5-min intervals. End-of-trial forage utilization was 48.5% ± 3.7% and 5.5% ± 0.7% for areas inside and outside of the fuel break, respectively. Daily percentage of cattle locations inside the fuel break was initially > 94% but declined to approximately 75% by the end of the trial. Percentage daily locations of dry cows and cow/calf pairs inside the fuel break was 98.5% ± 0.5% and 80.6% ± 1.1%, respectively (P < 0.001). Our data suggest virtual fencing can be a highly effective method of concentrating grazing to reduce herbaceous fuel biomass within linear fuel breaks. Efficacy of this method could be substantially impacted by use of dry versus cow/calf pairs.
View article.
We found the predicted positive relationship between mesic habitat availability and sage-grouse productivity, but annual precipitation explained additional variation in productivity even after accounting for mesic habitat availability. Hence, precipitation and drought may drive sage-grouse productivity via more than one mechanism acting on multiple demographic rates. Productivity was also limited by exotic annual grass invasion and conifer encroachment. Mesic habitat availability was a function of topographic relief, mean elevation, annual mean snow water equivalent, and winter temperatures, indicating that snowpack recharges the late summer mesic resources that support sage-grouse productivity. Management actions focused on maintaining and restoring mesic resources and drought resilient habitats, limiting the spread of exotic annual grasses, and reversing conifer encroachment should support future sage-grouse recruitment and help mitigate the effects of climate change.
View report.
Our findings suggest that all deserts exhibited vulnerability to increasing fire disturbance because relatively low soil seed densities may not provide enough propagules for revegetation. Therefore, seeding of these communities may be especially important. In the cold deserts, this susceptibility was further evidenced by the fact that aboveground community composition in fire-affected areas was significantly different from the nearby unburned community even 30 years after fire and burned communities were associated with non-native species. That said, native species did exist in seed banks of burned sites and some taxa, like Sporobolus sp., occurred in high densities. Therefore, caution may be needed when using herbicide treatments to control exotic species as there may be unintended consequences of decreasing desirable species. In contrast, our warm desert sites exhibited less change in terms of seed densities, species richness and aboveground community composition following fire. In the face of more frequent fires, the lack of shrub seeds in the seed bank of all deserts was notable and we found no evidence of greater seed densities or unique species assemblages associated with shrub microsites.