Research and Publications

Journal article icon

How vulnerable are states to wildfire: A livelihood assessment

View article.

We produce a framework needed to compute the livelihood vulnerability index (LVI) for the top 14 American States that are most exposed to wildfires, based on the 2019 Wildfire Risk report of the acreage size burnt in 2018 and 2019: Arizona, California, Florida, Idaho, Montana, Nevada, New Mexico, Oklahoma, Oregon, Utah, Washington, and Wyoming. The LVI is computed for each State by first considering the State’s exposure, sensitivity, and adaptive capacity to wildfire events (known as the three contributing factors). These contributing factors are determined by a set of indictor variables (vulnerability metrics) that are categorized into corresponding major component groups. The framework structure is then justified by performing a principal component analysis (PCA) to ensure that each selected indicator variable corresponds to the correct contributing factor. The LVI for each State is then calculated based on a set of algorithms relating to our framework. LVI values rank between 0 (low LVI) to 1 (high LVI). Our results indicate that Arizona and New Mexico experience the greatest livelihood vulnerability, with an LVI of 0.57 and 0.55, respectively. In contrast, California, Florida, and Texas experience the least livelihood vulnerability to wildfires (0.44, 0.35, 0.33 respectively). LVI is strongly weighted on its contributing factors and is exemplified by the fact that even though California has one of the highest exposures and sensitivity to wildfires, it has very high adaptive capacity measures in place to withstand its livelihood vulnerability. Thus, States with relatively high wildfire exposure can exhibit relatively lower livelihood vulnerability because of adaptive capacity measures in place.

Journal article icon

Land surface phenology reveals differences in peak and season-long vegetation productivity responses to climate and management

View article.

We first analyzed interannual trends in six phenological measures as a baseline. We then demonstrated how including annual-resolution predictors can provide more nuanced insights into measures of phenology between plant communities and across the ecoregion. Across the study area, higher annual precipitation increased both peak and season-long productivity. In contrast, higher mean annual temperatures tended to increase peak productivity but for the majority of the study area decreased season-long productivity. Annual precipitation and temperature had strong explanatory power for productivity-related phenology measures but predicted date-based measures poorly. We found that relationships between climate and phenology varied across the region and among plant communities and that factors such as recovery from disturbance and anthropogenic management also contributed in certain regions. In sum, phenological measures did not respond ubiquitously nor covary in their responses. Nonclimatic dynamics can decouple phenology from climate; therefore, analyses including only interannual trends should not assume climate alone drives patterns.

Synthesis/Technical Report icon

We can better manage ecosystems by connecting solutions to constraints

View article.

Here we synthesize and present a portfolio of broad structured approaches and specific actions that can be used to advance restoration of plant-invaded wetlands in a diversity of contexts immediately and over the long-term, linking these solutions to the constraints they best address. These solutions can be used by individual managers to chart a path forward when they are daunted by potentially needing to pivot from more familiar management actions to increase efficiency and efficacy in attaining restoration goals. In more complex collaborations with multiple actors, the shared vocabulary presented here for considering and selecting the most appropriate solution will be essential. Of course, every management context is unique (i.e., different constraints are at play) so we advocate that involved parties consider a range of potential solutions, rather than either assuming any single solution to be universally optimal or relying on a solution simply because it is familiar and feasible. Moving rapidly to optimally effective invasive plant management in wetlands may not be realistic, but making steady, incremental progress by implementing appropriate solutions based on clearly identified constraints will be critical to eventually attaining wetland restoration goals.

Journal article icon

Drivers of seedling establishment success in dryland restoration

View article.

Here we examine restoration seeding outcomes across 174 sites on six continents, encompassing 594,065 observations of 671 plant species. Our findings suggest reasons for optimism. Seeding had a positive impact on species presence: in almost a third of all treatments, 100% of species seeded were growing at first monitoring. However, dryland restoration is risky: 17% of projects failed, with no establishment of any seeded species, and consistent declines were found in seeded species as projects matured. Across projects, higher seeding rates and larger seed sizes resulted in a greater probability of recruitment, with further influences on species success including site aridity, taxonomic identity and species life form. Our findings suggest that investigations examining these predictive factors will yield more effective and informed restoration decision-making.

Journal article icon

Wildfire smoke may have contributed to thousands more COVID-19 cases and deaths

View article.

Thousands of COVID-19 cases and deaths in California, Oregon, and Washington between March and December 2020 may be attributable to increases in fine particulate air pollution (PM2.5) from wildfire smoke, according to a new study co-authored by researchers at Harvard T.H. Chan School of Public Health.

Journal article icon

76-year decline and recovery of aspen mediated by contrasting fire regimes

View article.

Our study area in northeastern California on the Lassen, Modoc and Plumas National Forests has experienced recent large mixed-severity wildfires where aspen was present, providing an opportunity to study the re-introduction of fire. We observed two time periods; a 52-year absence of fire from 1941 to 1993 preceding a 24-year period of wildfire activity from 1993 to 2017. We utilized aerial photos and satellite imagery to delineate aspen stands and assess conifer cover percent. We chose aspen stands in areas where wildfires overlapped (twice-burned), where only a single wildfire burned, and areas that did not burn within the recent 24-year period. We observed these same stands within the first period of fire exclusion for comparison (i.e., 1941–1993). In the absence of fire, all aspen stand areas declined and all stands experienced increases in conifer composition. After wildfire, stands that burned experienced a release from conifer competition and increased in stand area. Stands that burned twice or at high severity experienced a larger removal of conifer competition than stands that burned once at low severity, promoting expansion of aspen stand area. Stands with less edge:area ratio also expanded in area more with fire present. Across both time periods, stand movement, where aspen stand footprints were mostly in new areas compared to footprints of previous years, was highest in smaller stands. In the fire exclusion period, smaller stands exhibited greater loss of area and changes in location (movement) than in the return of fire period, highlighting their vulnerability to loss via succession to conifers in the absence of disturbances that provide adequate growing space for aspen over time.

Journal article icon

Warming enabled upslope advance in western US forest fires

View article.

Here, we focus on the elevational distribution of forest fires in mountainous ecoregions of the western United States and show the largest increase rates in burned area above 2,500 m during 1984 to 2017. Furthermore, we how that high-elevation fires advanced upslope with a median cumulative change of 252 m (−107 to 656 m; 95% CI) in 34 y across studied ecoregions. We also document a strong interannual relationship between high-elevation fires and warm season vapor pressure deficit (VPD). The upslope advance of fires is consistent with observed warming reflected by a median upslope drift of VPD isolines of 295 m (59 to 704 m; 95% CI) during 1984 to 2017. These findings allow us to estimate that recent climate trends reduced the high-elevation flammability barrier and enabled fires in an additional 11% of western forests. Limited influences of fire management practices and longer fire-return intervals in these montane mesic systems suggest these changes are largely a byproduct of climate warming. Further weakening in the high-elevation flammability barrier with continued warming has the potential to transform montane fire regimes with numerous implications for ecosystems and watersheds.

Journal article icon

Patterns of wildfire risk in the US as characterized by land managers

View article.

In this study, patterns of wildfire risk were explored from operational relative risk assessments (RRA) completed by land managers on 5087 wildfires from 2010 to 2017 in every geographic area of the USA. The RRA is the formal risk assessment used by land managers to develop strategies on emerging wildfires when concerns and issues related to wildfire management are in real-time. Only 38% of these wildfires were rated as high risk and 28% had high ratings for values at risk. Large regional variations were evident, with the West Coast regions selecting high risk and the South-west and Eastern regions selecting low risk. There were finer-scale influences on perceived risk when summarized on a jurisdictional level. Finally, risk summarized by USA agencies showed that the National Park Service and USDA Forest Service selected high risk less frequently compared with other agencies. By illuminating patterns of risk, this research intends to stimulate examination of the social, cultural, and physiographic factors influencing conceptions of risk.

Journal article icon

Resilience to fire and resistance to annual grass invasion in sagebrush ecosystems of US National Parks

Approximately 70 park units include at least some sagebrush shrublands or steppe, but we identified 40 parks with substantial amounts (>20% of park area) that can be included in an agency-wide conservation strategy. Second, we examined detailed patterns of resilience and resistance, fire history and fire risk, cheatgrass (Bromus tectorum) invasion, and sagebrush shrub (Artemisia spp.) persistence in five national park units in Columbia Basin and Snake River Plain sagebrush steppe, contextualized by the broader summary. In these five parks, fire frequency and size increased in recent decades. Cheatgrass invasion and sagebrush persistence correlated strongly with resilience, burn frequency (0–3 fires since ~1940), and burn probability, but with important variation, in part mediated by local-scale topography. Third, we used these insights to assemble strategic sagebrush ecosystem fire protection mapping scenarios in two additional parks – Lava Beds National Monument and Great Basin National Park. Readily available and periodically updated geospatial data including soil surveys, fire histories, vegetation inventories, and long-term monitoring support resiliency-based adaptive management through tactical planning of pre-fire protection, post-fire restoration, and triage. Our assessment establishes the precarious importance of the US national park system to sagebrush ecosystem conservation and an operational strategy for place-based and science-supported conservation.

Journal article icon

Understanding the future of big sagebrush regeneration: Challenges of projecting complex ecological processes

View article.

Here, we used two complementary models to explore spatial and temporal relationships in the potential of big sagebrush regeneration representing (1) range-wide big sagebrush regeneration responses in natural vegetation (process-based model) and (2) big sagebrush restoration seeding outcomes following fire in the Great Basin and the Snake River Plains (regression-based model). The process-based model suggested substantial geographic variation in long-term regeneration trajectories with central and northern areas of the big sagebrush region remaining climatically suitable, whereas marginal and southern areas are becoming less suitable. The regression-based model suggested, however, that restoration seeding may become increasingly more difficult, illustrating the particularly difficult challenge of promoting sagebrush establishment after wildfire in invaded landscapes. These results suggest that sustaining big sagebrush on the landscape throughout the 21st century may climatically be feasible for many areas and that uncertainty about the long-term sustainability of big sagebrush may be driven more by dynamics of biological invasions and wildfire than by uncertainty in climate change projections. Divergent projections of the two models under 21st century climate conditions encourage further study to evaluate potential benefits of re-creating conditions of uninvaded, unburned natural big sagebrush vegetation for post-fire restoration seeding, such as seeding in multiple years and, for at least much of the northern Great Basin and Snake River Plains, the control of the fire-invasive annual grass cycle.

Narrow your search

Stay Connected