Research and Publications

Journal article icon

Risk perceptions and mitigation behaviors of residents following a near-miss wildfire

View article.

Our research was guided by the general question, does a near-miss wildfire influence residents’ perceptions and self-reported fire risk mitigation behaviors? Specifically, we examined the cognitive appraisals and physical risk factors influencing residents’ previous and planned mitigation actions both before and after the fire. Our findings show risk perceptions declined significantly after the fire while residents’ intentions to take nine different fire risk mitigation actions increased. These results suggest near-miss fire events result in simultaneous “let-downs” and “wake-up calls” among affected residents. Near-miss wildfires present a unique opportunity for wildfire community preparedness, outreach, and engagement programs to capitalize on an increased willingness to take risk mitigation actions. However, these programs may face difficulties in communicating the continued threat of subsequent fire events.

Journal article icon

Developing behavioral and evidence-based programs for wildfire risk mitigation

View article.

The actions of residents in the wildland–urban interface can influence the private and social costs of wildfire. Wildfire programs that encourage residents to take action are often delivered without evidence of effects on behavior. Research from the field of behavioral science shows that simple, often low-cost changes to program design and delivery can influence socially desirable behaviors. In this research report, we highlight how behavioral science and experimental design may advance efforts to increase wildfire risk mitigation on private property. We offer an example in which we tested changes in outreach messaging on property owners’ interest in wildfire risk
information. In partnership with a regional wildfire organization, we mailed 4564 letters directing property owners to visit personalized wildfire risk webpages. By tracking visitation, we observed that 590 letter recipients (12%) sought information about their wildfire risk and response varied by community. This research–practice collaboration has three benefits: innovation in outreach, evidence of innovation through experimental design, and real impacts on interest in wildfire mitigation among property owners. Future collaborations may inform behavioral and evidence-based programs to better serve residents and the public interest as the risks from wildfires are projected to grow.

Icon for Field Guide resources

Wildfire home retrofit guide

View guide.

This Guide includes specific recommendations for how to retrofit existing components of a home to withstand wildfre. Each section contains an explanation of how the component is vulnerable to wildfire and what can be done to improve that component. The illustrations throughout the Guide are intended to show best practices for reducing the vulnerability of a home to wildfire.

Factsheet/brief icon

Restoration of sagebrush habitats through conifer removal – FAQs

View the Pinyon-Juniper removal FAQs

Expansion of native conifers (evergreen trees such as juniper, pinyon pine, ponderosa pine, and Douglas-fir) into sagebrush ecosystems is degrading and reducing rangelands important to wildlife and people. As conifers expand into previously treeless shrublands, predictable changes occur resulting in the loss of sagebrush habitats and imperiled species, like sage grouse. Conifer expansion is recognized as a primary threat to the conservation of sage grouse and sagebrush ecosystems and land managers are working together to scale up targeted conifer removal to maintain dwindling shrubland habitats. Below are some answers to frequently asked questions related to these efforts.

Icon for Field Guide resources

Smoke Management Guide for Prescribed Fire

View guide.

The NWCG Smoke Management Guide for Prescribed Fire contains information on prescribed fire smoke management techniques, air quality regulations, smoke monitoring, modeling, communication, public perception of prescribed fire and smoke, climate change, practical meteorological approaches, and smoke tools. The primary focus of this document is to serve as the textbook in support of NWCG’s RX-410, Smoke Management Techniques course which is required for the position of Prescribed Fire Burn Boss Type 2 (RXB2). The Guide is useful to all who use prescribed fire, from private land owners to federal land managers, with practical tools, and underlying science. Many chapters are helpful for addressing air quality impacts from wildfires. It is intended to assist those who are following the guidance of the NWCG’s Interagency Prescribed Fire Planning and Implementation Procedures Guide, PMS 484,  in planning for, and addressing, smoke when conducting prescribed fires.

Journal article icon

High-severity wildfire potential – associating meteorology, climate, resource demand and wildfire activity with preparedness levels

View article.

National and regional preparedness level (PL) designations support decisions about wildfire risk management. Such decisions occur across the fire season and influence pre-positioning of resources in areas of greatest fire potential, recall of personnel from off-duty status, requests for back-up resources from other areas, responses to requests to share resources with other regions during fire events, and decisions about fuel treatment and risk reduction, such as prescribed burning. In this paper, we assess the association between PLs assigned at national and regional (Northwest) scales and a set of predictors including meteorological and climate variables, wildfire activity and the mobilisation and allocation levels of fire suppression resources. To better understand the implicit weighting applied to these factors in setting PLs, we discern the qualitative and quantitative factors associated with PL designations by statistical analysis of the historical record of PLs across a range of conditions. Our analysis constitutes an important step towards efforts to forecast PLs and to support the future projection and anticipation of firefighting resource demand, thereby aiding wildfire risk management, planning and preparedness.

Journal article icon

US National maps attributing forest change: 1986-2010

View article.

National monitoring of forestlands and the processes causing canopy cover loss, be they abrupt or gradual, partial or stand clearing, temporary (disturbance) or persisting (deforestation), are necessary at fine scales to inform management, science and policy. This study utilizes the Landsat archive and an ensemble of disturbance algorithms to produce maps attributing event type and timing to > 258 million ha of contiguous Unites States forested ecosystems (1986-2010). Nationally, 75.95 million forest ha (759,531 km2) experienced change, with 80.6% attributed to removals, 12.4% to wildfire, 4.7% to stress and 2.2% to conversion. Between regions, the relative amounts and rates of removals, wildfire, stress and conversion varied substantially. The removal class had 82.3% (0.01 S.E.) user’s and 72.2% (0.02 S.E.) producer’s accuracy. A survey of available national attribution datasets, from the data user’s perspective, of scale, relevant processes and ecological depth suggests knowledge gaps remain.

Journal article icon

A climatic dipole drives short- and long-term patterns of postfire forest recovery in the western US

View article.

Here, we identify a north–south dipole in annual climatic moisture deficit anomalies across the Interior West of the US and characterize its influence on forest recovery from fire. We use annually resolved establishment models from dendrochronological records to correlate this climatic dipole with short-term postfire juvenile recruitment. We also examine longer-term recovery trajectories using Forest Inventory and Analysis data from 989 burned plots. We show that annual postfire ponderosa pine recruitment probabilities in the northern Rocky Mountains (NR) and the southwestern US (SW) track the strength of the dipole, while declining overall due to increasing aridity. This indicates that divergent recovery trajectories may be triggered concurrently across large spatial scales: favorable conditions in the SW can correspond to drought in the NR that inhibits ponderosa pine establishment, and vice versa. The imprint of this climatic dipole is manifest for years postfire, as evidenced by dampened long-term likelihoods of juvenile ponderosa pine presence in areas that experienced postfire drought. These findings underscore the importance of climatic variability at multiple spatiotemporal scales in driving cross-regional patterns of forest recovery and have implications for understanding ecosystem transformations and species range dynamics under global change.

Journal article icon

Human land uses reduce climate connectivity across North America

View article.

Climate connectivity, the ability of a landscape to promote or hinder the movement of organisms in response to a changing climate, is contingent on multiple factors including the distance organisms need to move to track suitable climate over time (i.e. climate velocity) and the resistance they experience along such routes. An additional consideration which has received less attention is that human land uses increase resistance to movement or alter movement routes and thus influence climate connectivity. Here we evaluate the influence of human land uses on climate connectivity across North America by comparing two climate connectivity scenarios, one considering climate change in isolation and the other considering climate change and human land uses. In doing so, we introduce a novel metric of climate connectivity, ‘human exposure’, that quantifies the cumulative exposure to human activities that organisms may encounter as they shift their ranges in response to climate change. We also delineate potential movement routes and evaluate whether the protected area network supports movement corridors better than non-protected lands. We found that when incorporating human land uses, climate connectivity decreased; climate velocity increased on average by 0.3 km/year and cumulative climatic resistance increased for ~83% of the continent. Moreover, ~96% of movement routes in North America must contend with human land uses to some degree. In the scenario that evaluated climate change in isolation, we found that protected areas do not support climate corridors at a higher rate than non-protected lands across North America. However, variability is evident, as many ecoregions contain protected areas that exhibit both more and less representation of climate corridors compared to non-protected lands. Overall, our study indicates that previous evaluations of climate connectivity underestimate climate change exposure because they do not account for human impacts.

Journal article icon

Pre-season fire management planning: the use of Potential Operational Delineations to prepare for wildland fire events

View article

US fire scientists are developing Potential Wildfire Operational Delineations, also known as ‘PODs’, as a pre-fire season planning tool to promote safe and effective wildland fire response, strengthen risk management approaches in fire management and better align fire management objectives. PODs are a collaborative planning approach based on spatial analytics to identify potential wildfire control lines and assess the desirability of fire before ignition. They offer the opportunity to apply risk management principles with partners before the compressed timeframe of incident response. We sought to understand the potential utility of PODs and factors that may affect their use through semi-structured interviews with personnel on several national forests. Interviewees said PODs offer a promising shift in the wildland fire management dynamic, particularly by facilitating proactive communication and coordination about wildfire response. Successfully employing PODs will require leadership commitment, stakeholder and partner engagement and interdisciplinary staff involvement. Our work offers insights for national forests and other jurisdictions where managers are looking to strengthen coordination and strategic approaches for wildland fire response by utilizing pre-season collaboration and data analytics.

Narrow your search

Stay Connected