Research and Publications
View article.
This study presents a generalizable functional diversity approach for measuring pyrodiversity, which incorporates multiple fire regime traits and can be applied across scales. Further, we tested the socioecological drivers of pyrodiversity among forests of the western United States. Largely mediated by burn activity, pyrodiversity was positively associated with actual evapotranspiration, climate water deficit, wilderness designation, elevation and topographic roughness but negatively with human population density. These results indicate pyrodiversity is highest in productive areas with pronounced annual dry periods and minimal fire suppression. This work can facilitate future pyrodiversity studies including whether and how it begets biodiversity among taxa, regions and fire regimes.
View story map.
The Pack Creek Wildfire, ignited by an abandoned campfire, started early in the fire season on June 9, 2021 in the Pack Creek Day Use Area on the Manti-La Sal National Forest.
Under the influence of down-slope, down-canyon winds, the fire made a push west and down Pack Creek. The fire quickly exploded as a crown fire through a riparian area composed largely of cottonwood trees and pinyon and juniper landscapes. Within the community, fuel breaks implemented by Forestry, Fire and State Lands (State of Utah, FFSL) were designed to act as intermittent catch points for firefighters to actively engage the fire.
View article.
This study found that prescribed fires and operations reduced tree basal area loss from the wildfire by an average of 32% and 22% respectively, and that severity was reduced by 72% in areas with both prescribed fire and operations. Our approach could be applied to other wildfires and regions to better understand the effects of fuel treatments and fire suppression operations on wildfire severity.
View article.
Across practice types, ≥99% of fields had no evidence of rills, gullies, or pedestaling from erosion, and 91% of fields had <20% bare soil cover, with region being the strongest predictor of bare soil cover. Seventy-nine percent of fields had ≥50% grass cover, with cover differing by practice type and region. Native grass species were present on more fields in wildlife and wetland practices compared to grassland practices. Forb cover >50% and native forb presence occurred most frequently in wildlife practices, with region being the strongest driver of differences. Federally listed noxious grass and forb species occurred on 23% and 61% of fields, respectively, but tended to constitute a small portion of cover in the field. Estimates from edge-of-field surveys and in-field validation sampling were strongly correlated, demonstrating the utility of the edge-of-field surveys. Our results provide the first national-level assessment of CRP establishment in three decades, confirming that enrolled wildlife and wetland practices often have diverse perennial vegetation cover and very few erosional features.
View synthesis.
Wildfires are known to be one of the main causes of soil erosion and land degradation, and their impacts on ecosystems and society are expected to increase in the future due to changes in climate and land use. It is therefore vital to mitigate the increased hydrological and erosive response after wildfires to maintain the sustainability of ecosystems and protect the values at risk downstream from the fire-affected areas. Soil erosion mitigation treatments have been widely applied after wildfires but assessment of their effectiveness has been limited to local and regional-scale studies, whose conclusions may depend heavily on site-specific conditions. To overcome this limitation, a meta-analysis approach was applied to investigations of post-wildfire soil erosion mitigation treatments published in peer-reviewed journals.
View brief.
Large wildfires need four key ingredients to burn, not just one. Ignitions, fuels, and drought thresholds must be crossed at the same time, enhanced by anomalous weather events such as foehn winds. But how do these ingredients, or drivers, fit together in various ecosystems? In this important concept paper, Pausas and Keeley (2021) outline the mechanistic flow of these complex drivers for fire prone ecosystems and illustrate this in the figure below (Fig.1). In brief, the fire weather for a given ecosystem helps to push the other three essential driver thresholds, or saturation points, down. With ignitions, fuel continuity, and drought saturation points simultaneously lowered by the right weather, wildfire will be triggered.
View article.
Highlights:
- Automated and repeatable method to improve scientific integrity of long-term data
- Analyzed long-term data to improve monitoring policies and efforts
- Increased collaborations between federal and state agencies to improve data quality
- Recommendations for managing existing and new long-term monitoring data
- Spatiotemporal heatmap video of Greater sage-grouse counts across North American
View article.
To address the challenge of spatial conservation prioritization, we developed the Prioritizing Restoration of Sagebrush Ecosystems Tool (PReSET). This decision support tool utilizes the prioritizr package in program R and an integer linear programming algorithm to select parcels representing both high biodiversity value and high probability of restoration success. We tested PReSET on a sagebrush steppe system within southwestern Wyoming using distributional data for six species with diverse life histories and a spatial layer of predicted sagebrush recovery times to identify restoration targets at both broad and local scales. While the broad-scale portion of our tool outputs can inform policy, the local-scale results can be applied directly to on-the-ground restoration. We identified restoration priority areas with greater precision than existing spatial prioritizations and incorporated range differences among species. We noted tradeoffs, including that restoring for habitat connectivity may require restoration actions in areas with lower probability of success. Future applications of PReSET will draw from emerging datasets, including spatially-varying economic costs of restoration, animal movement data, and additional species, to further improve our ability to target effective sagebrush restoration.
View synthesis.
This synthesis reviews current knowledge of pinyon and juniper ecosystems, in both persistent and newly expanded woodlands, for managers, researchers, and the interested public. We draw from a large volume of research papers to centralize information on these semiarid woodlands. The first section includes a general description of both the Great Basin and northern Colorado Plateau. The ecology section covers woodland and species life histories, biology, and ecology and includes a detailed discussion of climate and the potential consequences of climate change specific to the Great Basin and Colorado Plateau. The history section discusses 20,000 years of woodland dynamics and geographic differences among woodland disturbance regimes and resilience. The ecohydrology section discusses hydrologic processes in woodlands that influence soil conservation and loss; water capture, storage, and release; and the effect that woodland structure and composition have on these processes. The final section, restoration and management, covers the history of woodland management, the different methods used, the advantages and disadvantages of different vegetation treatments, and posttreatment vegetation responses. We also discuss successes and failures and key components that determine project outcomes important for consideration when restoring ecosystem function, integrity, and resilience.
View article.
Retrospective sensitivity analysis suggested the dynamics in populations growth rates were driven by increases in juvenile, adult, first nest, and yearling survival in the Treatment relative to the Control. These findings demonstrate the effectiveness of targeted conifer removal as a management strategy for conserving sage-grouse populations in sagebrush steppe affected by conifer expansion. Examples of positive, population-level responses to habitat management are exceptionally rare for terrestrial vertebrates, and this study provides promising evidence of active management that can be implemented to aid recovery of an imperiled species and biome.