Research and Publications
View brief.
Land managers face a mounting variety of challenges, including how to efficiently dispose of excessive woody residues on forest sites (especially in the Western United States), maintain and improve soil productivity, improve forest resilience to changes in climate (especially as it pertains to drought and fire), and increase the effectiveness of reforestation activities. The use of biochar, a charcoal that is not readily degraded and is made specifically for land application, may have a role in meeting these challenges. Moreover, biochar may provide nursery managers with opportunities to produce seedlings for reforestation and restoration in a more sustainable way, particularly by reducing irrigation inputs, as evidenced through several trials summarized here.
View article.
Drylands encompass over 40% of terrestrial ecosystems and face significant anthropogenic degradation causing a loss of ecosystem integrity, services, and deterioration of social‐ecological systems. To combat this degradation, some dryland restoration efforts have focused on the use of biological soil crusts (biocrusts): complex communities of cyanobacteria, algae, lichens, bryophytes, and other organisms living in association with the top millimeters of soil. Biocrusts are common in many ecosystems and especially drylands. They perform a suite of ecosystem functions: stabilizing soil surfaces to prevent erosion, contributing carbon through photosynthesis, fixing nitrogen, and mediating the hydrological cycle in drylands. Biocrusts have emerged as a potential tool in restoration; developing methods to implement effective biocrust restoration has the potential to return many ecosystem functions and services. Although culture‐based approaches have allowed researchers to learn about the biology, physiology, and cultivation of biocrusts, transferring this knowledge to field implementation has been more challenging. A large amount of research has amassed to improve our understanding of biocrust restoration, leaving us at an opportune time to learn from one another and to join approaches for maximum efficacy.
As MTBS data have been used over the course of many years and for many disparate applications, users should be aware that the MTBS burned area and severity products have been actively reviewed and revised to benefit from more robust satellite image availability and to address any observed quality issues. In a sample of 123 remapped fires, we found no significant change in the burned area boundary products when compared to the original mapped fires; however, significant changes did exist in the distribution of unburned, low, and moderate burn severity pixels within the thematic product.
Efforts to conserve biodiversity increasingly focus on identifying climate- change refugia – areas relatively buffered from contem-porary climate change over time that enable species persistence. Identification of refugia typically includes modeling the distribu-tion of a species’ current habitat and then extrapolating that distribution given projected changes in temperature and precipita-tion, or by mapping topographic features that buffer species from regional climate extremes. However, the function of those hypothesized refugia must be validated (or challenged) with independent data not used in the initial identification of the refugia. Although doing so would facilitate the incorporation of climate- change refugia into conservation and management decision mak-ing, a synthesis of validation methods is currently lacking. We reviewed the literature and defined four methods to test refugia predictions. We propose that such bottom- up approaches can lead to improved protected- area designations and on- the- ground management actions to reduce influences from non- climate stressors within potential refugia.
Disturbance refugia – locations that experience less severe or frequent disturbances than the surrounding landscape – provide a framework to highlight not only where and why these biological legacies persist as adjacent areas change but also the value of those legacies in sustaining biodiversity. Recent studies of disturbance refugia in forest ecosystems have focused primarily on fire, with a growing recognition of important applications to land management. Given the wide range of disturbance processes in forests, developing a broader understanding of disturbance refugia is important for scientists and land managers, particularly in the con-text of anthropogenic climate change. We illustrate the framework of disturbance refugia through the individual and interactive effects of three prominent forest disturbance agents: fire, drought, and insect outbreaks. We provide examples of disturbance ref-ugia and related applications to natural resource management in western North America, demonstrate methods for characterizing refugia, identify research priorities, and discuss why a more comprehensive definition of disturbance refugia is relevant to conser-vation globally
Wildfire is a growing threat in the western US, driven by high fuel loads, a warming climate, and rising human activity in the wildland urban interface. Diverse stakeholders must collaborate to mitigate risk and adapt to changing conditions. Communication strategies in collaborative efforts may be most effective if they align with local perspectives on wildfire and climate change. We
investigate drivers of residents’ subjective perceptions regarding both issues in eastern Oregon using 2018 survey data, and examine objective evidence regarding local fuel loads, climate, and
wildfire to identify trends and contextualize residents’ perceptions. We find that sociopolitical identity strongly predicts climate change beliefs, and that identity and climate beliefs predict both
perceptions of recent past climate and likely future trends. Political influences on climate perceptions are strongest among people whose friends mostly belong to the same party. In contrast, perceptions about future wildfire risks are largely independent of climate-change beliefs, and of individual or peer-group politics. Most people accurately perceive the rising frequency of large wildfires, and expect this trend to continue. Decision makers have an opportunity to engage diverse stakeholders in developing policies to mitigate increasing wildfire risk without invoking
climate change, which remains politically polarizing in some communities.
Grasslands occur on all of the continents. They collectively constitute the largest ecosystem in the world, making up 40.5% of the terrestrial land area, excluding Greenland and Antarctica. Grasslands are not entirely natural because they have formed and developed under natural and anthropogenic pressures. Their importance now is to the variety of ecosystem services that they provide: livestock grazing areas, water catchments, biodiversity reserves, tourism sites, recreation areas, religious sites, wild food sources, and natural medicine sources. An important function of grasslands is their sequestration and storage of carbon (C). Mollisol soils of grasslands have deep organic matter horizons that make this vegetation type almost as important as forests for C fixation and storage. Fire has been and continues to be an important disturbance in grassland evolution and management. Natural wildfires have been a component of grasslands for over 300 million years and were important in creating and maintaining most of these ecosystems. Humans ignited fires over many millennia to improve habitat for animals and livestock. Prescribed fire practiced by humans is a component of modern grassland management. The incidence of wildfires in grasslands continues to grow as an issue as droughts persist in semi-arid regions. Knowledge of fire effects on grasslands has risen in importance to land managers because fire, as a disturbance process, is an integral part of the concept of ecosystem management and restoration ecology. Fire is an intrusive disturbance in both managed and wildland forests and grasslands. It initiates changes in ecosystems that affect the composition, structure, and patterns of vegetation on the landscape. It also affects the soil and water resources of ecosystems that are critical to overall ecosystem functions and processes.
Access brief and journal article.
Easy-to-understand monitoring frameworks create a common baseline resource standard that can be easily understood and allow diverse stakeholders with different needs to work together to restore and protect Mediterranean-type ecosystems into the future. This research brief provides an example of conceptual modeling framework.
Access report.
Wildfire across the western US has increased in size, frequency, and severity since the 1950s. These changes are closely linked with increases in temperature and an increased frequency and intensity of drought. Historically, frequent low to moderate-severity fires dominated the fire regime in many western forests, maintaining low-density forests with larger trees. A history of fire exclusion, logging activity, grazing, and invasive species has led to an uncharacteristic build-up of forest fuels in many areas, increasing the susceptibility to large-scale, high-severity wildfire. The US has a history of fire suppression efforts that has exacerbated the problem by increasing the density of trees and fuel availability, and reduced the overall area burned by wildfires to levels that are below those that occurred before the beginning of the 20th century.
The western US is also experiencing larger, more severe fires that are often near communities. In recent decades, the build-up of forest fuels, a warmer and drier climate, and expansion of the wildland-urban interface (WUI) into forested areas has changed western landscapes and increased wildfire hazard. Federal policy and management have primarily focused on fire suppression and more recently on fuels reduction on some federal lands. Forest restoration and fuels reduction projects have had positive ecological impacts; however, the pace and scale of forest treatments is not keeping up with heightened wildfire activity across the West.
This plan is intended to provide a shared vision for natural resource management and conservation in Nevada. The plan incorporates the existing “All Hands – All Lands” approach together with the recent Shared Stewardship Agreement signed by the State and Federal land management agencies in Nevada to guide the strategic direction for the management of natural resources across all lands in Nevada. To ensure this goal, NDF is asking natural resource management and conservation stakeholders and interested public to review and provide substantive comments that help advance the plan’s strategic direction.