Research and Publications

Journal article icon

Removal of cattle grazing correlates with increases in vegetation productivity and abundance of imperiled breeding birds

View article.

This study analyzed changes in vegetation and bird abundance at a wildlife refuge in southeastern Oregon over 24 years, following cessation of 120 years of livestock grazing. We quantified long-term changes in overall avian abundance and species richness and, specifically, in the abundances of 20 focal species. We then compared the local responses of the focal species to population-scale trends of the same species at three different large spatial scales. Overall avian abundance increased 23% during the 12 years after removal and remained consistent from then through year 24. Three times as many species colonized the survey sites as dropped out. Of the focal species, most riparian woodland-tree or shrub dependent, sagebrush obligate, and grassland or meadow taxa increased in abundance or remained stable locally. As these species were generally of conservation concern, the population increases contradicted regionally declining or stable trends. In contrast, most riparian woodland-cavity nester species decreased in abundance locally, reflecting disruption of aspen stand dynamics by decades of grazing. Avian nest parasites and competitors of native species declined in abundance locally, matching regional trends. Restoring riparian ecosystems by removing livestock appeared to be beneficial to the conservation of many of these declining populations of migratory birds.

Journal article icon

Past management spurs differential plant communities with single aspen clone forest

View article.

This study found distinct evidence that within management group species composition was more similar than across groups for two of the three pairings. However, the other pairing, the most successfully protected area and the completely unprotected area, was not statistically distinct; likely a result a deteriorating overstorey in these two areas, whereas the third management type (2014 Fence) exhibited higher canopy cover. Indicator species analysis found that a small group of plant species had statistical allegiances to specific management groups, suggesting resource preference selection within Pando. Ordination analysis searching for causal factors reached two broad conclusions: (1) aspen regeneration, and therefore long-term resilience, is being negatively affected by chronic animal browsing and (2) current understorey species diversity is highest where forest canopy gaps are abundant.

Journal article icon

Post-fire aspen regeneration varies in response to winter precipitation

Access article.

This study examined post-fire aspen stands across a regional climate gradient spanning from the north-central Great Basin to the northeastern portion of the Greater Yellowstone Ecosystem (USA). We investigated the influence of seasonal precipitation and temperature variables, snowpack, and site conditions (e.g. browsing levels, topography) on density of post-fire aspen regeneration (i.e. all small trees ha−1) and recruitment (i.e. small trees ≥2 m tall ha−1) across 15 fires that occurred between 2000 and 2009. The range of post-fire regeneration (2500–71,600 small trees ha−1) and recruitment (0–32,500 small trees ≥2 m ha−1) densities varied widely across plots. Linear mixed effects models demonstrated that both response variables increased primarily with early winter (Oct-Dec) precipitation during the ‘fire-regen period’ (i.e., fire year and five years after fire) relative to the 30-year mean. The 30-year mean of early winter precipitation and fire-regen period snowpack were also positively related to recruitment densities. Both response variables decreased with higher shrub cover, highlighting the importance of considering shrub competition in post-fire environments. Regeneration and recruitment densities were negatively related to proportion browsed aspen leaders and animal pellet densities (no./m2), respectively, indicating the influence of ungulate browsing even at the relatively low levels observed across sites. A post-hoc exploratory analysis suggests that deviation in early winter precipitation during the fire-regen period (relative to 30-year means) varied among sites along directional gradients, emphasizing the need to consider multiple spatiotemporal scales when investigating climate effects on post-fire successional dynamics.

Journal article icon

Using remote sensing products to predict recovery of vegetation after energy development

Access article.

With remotely-sensed (Landsat) estimates of vegetation cover collected every 2–5  years from sw Wyoming (1985–2015), we modeled changes in sagebrush cover on 375 former oil and gas well pads in response to weather and site-level conditions. We then used modeled relationships to predict recovery time across the landscape as an indicator of resilience for vegetation after well pad disturbances, where faster recovery indicates a greater capacity to recover when similarly disturbed. Rate of change in sagebrush cover generally increased with moisture and temperature, particularly at higher elevations. Rate of change in sagebrush cover also increased and decreased with greater percent sand and larger well pads, respectively. We predicted 21% of the landscape would recover to pre-disturbance conditions within 60 years, whereas other areas may require >100 years for recovery.

Journal article icon

Weather, risk, and resource orders on large fires in the western US

View article.

Study results suggest that weather is a primary driver of resource orders over the course of extended attack efforts on large fires. Incident Management Teams (IMTs) synthesize information about weather, fuels, and order resources based on expected fire growth rather than simply reacting to observed fire growth. Analysis shows that incident management teams are generally forward-looking and respond to expected rather than recently observed weather-driven fire behavior. These results may have important implications for forecasting resource needs and costs in a changing climate

Journal article icon

Seasonal drought in North America’s sagebrush biome structures dynamic mesic resources for sage-grouse

View article.

This study estimates biome‐wide mesic resource productivity from 1984 to 2016 using remote sensing to identify patterns of food availability influencing selective pressures on sage‐grouse. We linked productivity to abiotic factors to examine effects of seasonal drought across time, space, and land tenure, with findings partitioned along gradients of ecosystem water balance within Great Basin, Rocky Mountains and Great Plains regions. Precipitation was the driver of mesic resource abundance explaining ≥70% of variance in drought‐limited vegetative productivity. Spatiotemporal shifts in mesic abundance were apparent given biome‐wide climatic trends that reduced precipitation below three‐quarters of normal in 20% of years. Drought sensitivity structured grouse populations wherein landscapes with the greatest uncertainty in mesic abundance and distribution supported the fewest grouse. Privately owned lands encompassed 40% of sage‐grouse range, but contained a disproportional 68% of mesic resources. Regional drought sensitivity identified herein acted as ecological minimums to influence differences in landscape carrying capacity across sage‐grouse range. Our model depictions likely reflect a new normal in water scarcity that could compound impacts of demographic bottlenecks in Great Basin and Great Plains. We conclude that long‐term population maintenance depends on a diversity of drought resistant mesic resources that offset climate driven variability in vegetative productivity. We recommend a holistic public–private lands approach to mesic restoration to offset a deepening risk of water scarcity.

Journal article icon

Reptiles under the conservation umbrella of the greater sage‐grouse

View article.

This study quantified which reptile species may benefit from the protection of intact sage‐grouse habitat and which may be affected by recent (since about 1990) habitat restoration actions targeting sage‐grouse. Of 190 reptile species in the United States and Canadian provinces where greater sage‐grouse occur, 70 (37%) occur within the range of the bird. Of these 70 species, about a third (11 snake and 11 lizard species) have >10% of their distribution area within the sage‐grouse range. Land cover similarity indices revealed that 14 of the 22 species (8 snake and 6 lizard species) had relatively similar land cover associations to those of sage‐grouse, suggesting greater potential to be protected under the sage‐grouse conservation umbrella and greater potential to be affected, either positively or negatively, by habitat management actions intended for sage‐grouse. Conversely, the remaining 8 species are less likely to be protected because of less overlap with sage‐grouse habitat and thus uncertain effects of sage‐grouse habitat management actions. Our analyses of treatment databases indicated that from 1990 to 2014 there were at least 6,400 treatments implemented on public land that covered approximately 4 million ha within the range of the sage‐grouse and, of that, >1.5 million ha were intended to at least partially benefit sage‐grouse. Whereas our results suggest that conservation of intact sagebrush vegetation communities could benefit ≥14 reptiles, a greater number than previously estimated, additional research on each species’ response to habitat restoration actions is needed to assess broader claims of multi‐taxa benefits when it comes to manipulative sage‐grouse habitat management.

Journal article icon

Spatial imaging and screening for regime shifts

View article.

Screening is a strategy for detecting undesirable change prior to manifestation of symptoms or adverse effects. Although the well-recognized utility of screening makes it commonplace in medicine, it has yet to be implemented in ecosystem management. Ecosystem management is in an era of diagnosis and treatment of undesirable change, and as a result, remains more reactive than proactive and unable to effectively deal with today’s plethora of non-stationary conditions. In this paper, we introduce spatial imaging-based screening to ecology. We link advancements in spatial resilience theory, data, and technological and computational capabilities and power to detect regime shifts (i.e., vegetation state transitions) that are known to be detrimental to human well-being and ecosystem service delivery. With a state-of-the-art landcover dataset and freely available, cloud-based, geospatial computing platform, we screen for spatial signals of the three most iconic vegetation transitions studied in western USA rangelands: (1) erosion and desertification; (2) woody encroachment; and (3) annual exotic grass invasion. For a series of locations that differ in ecological complexity and geographic extent, we answer the following questions: (1) Which regime shift is expected or of greatest concern? (2) Can we detect a signal associated with the expected regime shift? (3) If detected, is the signal transient or persistent over time? (4) If detected and persistent, is the transition signal stationary or non-stationary over time? (5) What other signals do we detect? Our approach reveals a powerful and flexible methodology, whereby professionals can use spatial imaging to verify the occurrence of alternative vegetation regimes, image the spatial boundaries separating regimes, track the magnitude and direction of regime shift signals, differentiate persistent and stationary transition signals that warrant continued screening from more concerning persistent and non-stationary transition signals, and leverage disciplinary strength and resources for more targeted diagnostic testing (e.g., inventory and monitoring) and treatment (e.g., management) of regime shifts. While the rapid screening approach used here can continue to be implemented and refined for rangelands, it has broader implications and can be adapted to other ecological systems to revolutionize the information space needed to better manage critical transitions in nature.

Synthesis/Technical Report icon

Modeling long-term effects of fuel treatments on fuel loads and fire regimes in the Great Basin

Access summary and report.

The primary objective of this study was to explore the application of a dynamic global vegetation model (DGVM), the Ecosystem Demography (EDv2.2), to understand vegetation dynamics and ecosystem productivity in varying climate and fire scenarios. Most vegetation models do not represent sagebrush’s physical and physiological functions. Thus, we developed a sagebrush plant functional type (PFT) to use in modeling. Associated with this, the researchers performed a series of analyses and evaluations of the sagebrush and in the context of scenarios under natural (undisturbed) and disturbed (fire) environments.

  • Results indicate that a number of sagebrush parameters are most sensitive to how productive the plant is (in our model). These include specific leaf area (SLA), stomatal slope, fine root turnover rate, cuticular conductance, and maximum carboxylation rate. These findings allow future sagebrush modeling efforts to further refine these parameters in different environments.
  • The researchers comparisons between model runs and field data from Reynold Creek Experimental Watershed (RCEW), show good agreement. Improvements are needed to refine the model with additional PFTs representative of a range of elevations in the Great Basin.
  • The researchers fire scenario modeling suggested that fire substantially reduced shrub gross primary production (GPP) and it took several decades before it was restored to pre-fire conditions. Grass GPP, however, responded more quickly in post-fire conditions. While these processes are representative of field observations and other studies, additional PFTs and improvement in fire routines in the model will provide for a better prognosis of future ecosystem dynamics of the sagebrush-steppe.
Synthesis/Technical Report icon

A review of PJ woodlands and new literature

Visit the new PJ website maintained by Rick Miller.

View the complete pinyon-juniper synthesis

View fact sheet on pinyon-juniper ecology
View fact sheet on pinyon-juniper history
View fact sheet on pinyon-juniper ecohydrology
View fact sheet on pinyon-juniper management and restoration

This synthesis reviews current knowledge of pinyon and juniper ecosystems, in both persistent and newly expanded woodlands, for managers, researchers, and the interested public. We draw from a large volume of research papers to centralize information on these semiarid woodlands. The first section includes a general description of both the Great Basin and northern Colorado Plateau. The ecology section covers woodland and species life histories, biology, and ecology and includes a detailed discussion of climate and the potential consequences of climate change specific to the Great Basin and Colorado Plateau. The history section discusses 20,000 years of woodland dynamics and geographic differences among woodland disturbance regimes and resilience. The ecohydrology section discusses hydrologic processes in woodlands that influence soil conservation and loss; water capture, storage, and release; and the effect that woodland structure and composition have on these processes. The final section, restoration and management, covers the history of woodland management, the different methods used, the advantages and disadvantages of different vegetation treatments, and posttreatment vegetation responses. We also discuss successes and failures and key components that determine project outcomes important for consideration when restoring ecosystem function, integrity, and resilience.

Narrow your search

Resource Types
No results found
Article / Book (898)
Synthesis / Tech Report (231)
Fact Sheet / Brief (209)
Field Guide (55)
Abstract (27)
Story Map (19)
Newsletter / Digest (17)
Resource Collection (11)
Bibliography (4)
Video (3)
Topic
No results found
Carbon (5)
Case Study (48)
Climate & Fire & Adaptation (166)
Decision Support (58)
Fire & Economics (31)
Fire Behavior (78)
Fire Communication & Education (97)
Fire Ecology & Effects (138)
Fire History (36)
Fire Policy (39)
Fire Regimes (81)
Fire Risk (36)
Firefighter Safety (39)
Fuels & Fuel Treatments (313)
Human Dimensions of Fire (62)
Invasive Species (230)
Landscape Analysis (71)
Monitoring (40)
Post-fire Environment & Management (108)
Rehabilitation (18)
Resistance & Resilience (74)
Restoration (232)
Sage-grouse (116)
Sagebrush (224)
Smoke (30)
Targeted Grazing (41)
Traditional Ecological Knowledge (16)
Weather Effects (42)
Wildland Urban Interface (75)

Stay Connected