Research and Publications
Read the report.
The purpose of this analysis was to evaluate the number of federal oil and gas leases issued and number of APD issued between 2015 and 2019 that occurred within BLM-designated sage-grouse habitat (General and Priority Habitats). More specifically, our objective was to evaluate the differences in the number and acreage of federal oil and gas leases and number of APDs assigned inside and outside of BLM-designated sage-grouse habitat from October 1, 2015 to March 15, 2019.
Read the study.
This study compared seeding and not seeding mountain big sagebrush after juniper control (partial cutting followed with burning) in fully developed juniper woodlands (i.e., sagebrush had been largely excluded) at five sites, 7 and 8 yr after seeding. Sagebrush cover averaged ~ 30% in sagebrush seeded plots compared with ~ 1% in unseeded plots 8 yr after seeding, thus suggesting that sagebrush recovery may be slow without seeding after juniper control. Total herbaceous vegetation, perennial grass, and annual forb cover was less where sagebrush was seeded. Thus, there is a trade-off with herbaceous vegetation with seeding sagebrush. Our results suggest that seeding sagebrush after juniper control can accelerate the recovery of sagebrush habitat characteristics, which is important for sagebrush-associated wildlife. We suggest land manager and restoration practitioners consider seeding sagebrush and possibly other shrubs after controlling encroaching trees where residual shrubs are lacking after control.
Read the study.
This study analyzed effect sizes to assess responses of sagebrush, perennial and annual grasses and forbs, and ground cover to treatments. Most treatments successfully reduced sagebrush cover over the short and long term. All treatments increased long-term perennial grass cover in Wyoming big sagebrush communities, but in mountain big sagebrush communities, perennial grasses increased only when seeded after fire. In both sagebrush communities, treatments generally resulted in short-term, but not long-term, increases in perennial forb cover. Annual grasses increased in all treatments on sites dominated by mountain big sagebrush but stayed constant or decreased on sites dominated by Wyoming big sagebrush. This result was unexpected because sites dominated by Wyoming big sagebrush are typically thought to be less resilient to disturbance and less resistant to invasion than sites dominated by mountain big sagebrush. Together, these results indicate some of the benefits, risks, and contingent outcomes of sagebrush reduction treatments that should be considered carefully in any future decisions about applying such treatments.
Read the study.
This study was initiated in 2012 to test fall versus spring transplanting. Fall transplanting success averaged 65% with a range of 41% to 82%, while spring transplant success averaged 41% with a range of 13% to 65%. The cold desert of the Great Basin receives the majority of its precipitation during winter months, therefore providing a more reliable source of available precipitation for newly transplanted Wyoming big sagebrush seedlings. A significant part of increasing big sagebrush transplanting success is the combination of increased container size and moving the timing of transplanting from spring to fall due to an increase in favorable and reliable precipitation.
Read the study.
This study used a standardized protocol for root measurement across sagebrush steppe burned in the 2015 Soda fire in the Northern Great Basin, United States. Nearly all (99%) bunchgrasses, including seedlings, had deeper roots than the surrounding annual grasses (mean depth of annuals = 6.8 ± 3.3 cm), and 88% of seedlings remained rooted in response to the “tug test” (uprooting resistance to ~ 1 kg of upward pull on shoot), with smaller plants (mean height and basal diameters < 20 cm and < 2 cm, respectively) more likely to fail the test regardless of their root abundance. Lateral roots of bunchgrasses were scarcer in larger basal gaps (interspace between perennials) but were surprisingly not directly related to cover of surrounding exotic annual grasses (EAG). However, EAG cover increased with the size of basal gaps and decreased with greater basal diameter of bunchgrass (in addition to prefire EAG abundance). These results provide some support for 1) the importance of basal gaps and bunchgrass diameters as indicators of both vulnerability to annual grass invasion and bunchgrass root abundance and 2) the need for more detailed methods for root measurement than used here in order to substantiate their usefulness in understanding rangeland resistance and resilience.
Read article.
In 1998, the Joint Fire Science Program (JFSP) was statutorily authorized as a joint partnership between the U.S. Department of the Interior and the U.S. Department of Agriculture Forest
Service. The program provides leadership to the wildland fire science community by identifying high-priority fire science research needs that will enhance the decisionmaking ability of
managers to meet their objectives. This publication celebrates and describes the JFSP’s contributions to and impact on the wildland fire community over the past 20 years.
A total of 284 wildland firefighters (WLFFs) responded to the questionnaire, but were not required to answer every question. Quantitative data from the questionnaire were analysed to determine WLFF demographics, types of injuries and illnesses sustained, and the potential influence environmental factors have on injuries sustained. Most WLFFs sustained at least one injury or illness in the past five fire seasons with a majority of those injuries and illnesses occurring on the fireline on rocky mountainside terrain. Nearly half of the 453 injuries and illnesses reported were sprains and strains occurring to the lower back, knee and ankle. Twenty percent of WLFFs reporting injuries felt that their injury or illness was preventable. With most injuries and illnesses occurring on the fireline, the development of a more targeted, job-specific injury and illness prevention program that focuses on the lower extremities is warranted.
This study examines similarities and divergences in socioeconomic factors, management practices, drought adaptation strategies, information needs, and values between FGRs and multigenerational ranchers (MGRs). Survey results indicate FGRs and MGRs are not statistically different demographically and have similar values; however, key differences include FGRs using fewer information sources about ranching, fewer general management practices, and fewer drought adaptation practices. FGRs are also more susceptible to drought, and are underserved by organisations. Their vulnerability is particularly concerning, as many have limited drought experience, are more likely to take risks, and are less likely to find value and/or participate in ranching organisations. The future of rangelands requires that organisations interested in conserving rangelands and supporting ranchers re-evaluate assumptions about why FGRs and MGRs have different information needs beyond simplistic demographic identity, and instead focus on their affinity as FGRs in order to understand the complexity of the processes underlying these differences. We end with suggestions for a research agenda to support the climate resiliency of FGRs and increase the efficacy of support organizations.
During 1972–2018, California experienced a five‐fold increase in annual burned area, mainly due to more than an eight‐fold increase in summer forest‐fire extent. Increased summer forest‐fire area very likely occurred due to increased atmospheric aridity caused by warming. Since the early 1970s, warm‐season days warmed by approximately 1.4°C as part of a centennial warming trend, significantly increasing the atmospheric vapor pressure deficit (VPD). These trends were consistent with anthropogenic trends simulated by climate models. The response of summer forest‐fire area to VPD is exponential, meaning that warming has grown increasingly impactful. Robust interannual relationships between VPD and summer forest burned area strongly suggest that nearly all of the increase in summer forest‐fire area during 1972–2018 was driven by increased VPD. Climate‐change effects on summer wildfire were less evident in non‐forest. In fall, wind events and delayed onset of winter precipitation are the dominant promoters of wildfire. While these variables did not change much over the past century, background warming and consequent fuel drying is increasingly enhancing the potential for large fall wildfires. Among the many processes important to California’s diverse fire regimes, warming‐driven fuel drying is the clearest link between anthropogenic climate change and increased California wildfire activity to date.