Research and Publications

Journal article icon

Smoke emissions sensing and sampling by unmanned aircraft systems: Development and testing

View article.

Poor air quality arising from prescribed and wildfire smoke emissions poses threats to human health and therefore must be taken into account for the planning and implementation of prescribed burns for reducing contemporary fuel loading and other management goals. To better understand how smoke properties vary as a function of fuel beds and environmental conditions, we developed and tested a compact portable instrument package that integrates direct air sampling with air quality and meteorology sensing, suitable for in situ data collection within burn units and as a payload on multi-rotor small unmanned aircraft systems (sUASs). This study presents and discusses design specifications for the system and preliminary data collected in controlled burns at Tall Timbers Research Station, FL, USA and Sycan Marsh Preserve, OR, USA.

Journal article icon

Improving problem definition and project planning in complex natural resource management problem situations

View article.

Collaborative adaptive management (CAM) has proved difficult to implement successfully. Insufficient attention to the problem definition process contributes to disappointing outcomes because that step sets the problem-solving approach and the attitudes of key partners. The exploratory problem assessment (EA) approach is a practical and cost-effective way for CAM project managers to learn enough about a problem situation quickly enough to identify critical partners and incorporate their input into problem definition and project planning. EA is a facilitated conceptual modeling approach built around two basic ideas: knowledge-focused facilitation can improve the problem definition process, and information design concepts can assist in building common understandings of complex situations. A facilitator with knowledge-brokering skills gathers and integrates information from people with diverse experiential and technical knowledge of the problem situation. The results are presented as information-rich and readily understandable diagrammatic conceptual models that can function as change theories for project planning. The EA approach and visual design strategy are described, with two illustrative cases showing how the approach can be applied in practice.

Synthesis/Technical Report icon

Estimating fire smoke related health burden and novel tools to manage impacts on urban populations

View report.

This study comprehensively assessed the health risks posed by smoke exposure, and constructed new tools to estimate and forecast smoke concentration levels and associated health effects. We accomplished these goals with four specific aims. In Aim 1, we compared the chemical composition of fine PM emanating from fire smoke with typical urban PM in the US. In Aim 2, we conducted a systematic review and meta analysis of the risk estimates to evaluate the risks of smoke exposure for all relevant health outcomes. In Aim 4 we combined model-based predicted smoke exposure with health and economic assessment tools to provide real-time forecasts of health risk over space and time. In this report, we describe the results of this work and their impact on the field.

Journal article icon

Long-term vegetation response following post-fire straw mulching

View article.

This study found that mulch did not influence understory plant diversity, species richness, or fractional ground cover. However, on mulched plots, tree seedlings grew taller faster, especially on north-facing aspects, and there was slightly more graminoid cover. Mulch did not affect overall tree seedling density, but there were fewer ponderosa pine (Pinus ponderosa Lawson & C. Lawson) and more Douglas-fir (Pseudotsuga menziesii [Mirb.] Franco) in mulched areas, especially on south-facing slopes.

Journal article icon

Burn severity effects on plant diversity and composition in mixed conifer

View article.

This study found that the understory plant community was not fundamentally altered by these fires and fire contributed to increased species diversity both locally and regionally, suggesting that low to moderate burn severity fire is a treatment that contributes to long-term maintenance of a diverse and productive understory. Individual species traits were significant drivers of understory species assemblages and, as future change in climate and fire regimes leads to shifts in species composition, anticipation of consequences will be important. Although invasive species occurred at low cover levels, noxious weeds and invasive annual grasses will continue to be management challenges, particularly in dry regions of mixed conifer forests.

Synthesis/Technical Report icon

Cross-boundary wildfire and community exposure: A framework and application in the western US

Access report.

This report provides a framework for assessing cross-boundary wildfire exposure and a case study application in the western US. The case study provides detailed mapping and tabular decision support materials for prioritizing fuel management investments aimed at reducing wildfire exposure to communities located proximal to national forests. We used national FSim simulation outputs to (1) estimate cross-boundary wildfire among major land types (Federal, State, private); (2) quantify structure exposure to all western communities; (3) map sources of community wildfire exposure (firesheds); (4) characterize firesheds in terms of management opportunity and fuels; and (5) prioritize communities based on integration of exposure and fireshed characteristics.

Journal article icon

Deriving fire behavior metrics from UAS imagery

View article.

A rotor-wing unmanned aerial system (UAS) hovering above a fire provides a static, scalable sensing platform that can characterize terrain, vegetation, and fire coincidently. This study presents methods for collecting consistent time-series of fire rate of spread (RoS) and direction in complex fire behavior using UAS-borne NIR and Thermal IR cameras. Using a hybrid temperature-gradient threshold approach with data from two prescribed fires in dry conifer forests, the methods characterize complex interactions of observed heading, flanking, and backing fires accurately.

Journal article icon

Population divergence, demographic history, and local adaptation in sage-grouse (Centrocercus spp.)

View article.

Population genomic analyses reaffirmed genome-wide differentiation between greater and Gunnison sage-grouse, revealed pronounced intraspecific population structure, and highlighted important differentiation of a small isolated population of greater sage-grouse in the northwest of the range. Patterns of genome-wide differentiation were largely consistent with a hypothesized role of genetic drift due to limited gene flow among populations. Inferred ancient population demography suggested persistent declines in effective population sizes that have likely contributed to differentiation within and among species.

Journal article icon

Managing for multiple species: Greater sage‐grouse and sagebrush songbirds

View article.

This study determined average songbird density in areas of high and low probability of sage‐grouse occurrence. Sagebrush cover at intermediate scales was an important predictor for all species, and ground cover was important for all species except sage thrashers. Areas with a higher probability of sage‐grouse occurrence also contained higher densities of Brewer’s sparrows, green‐tailed towhees, and sage thrashers, but predicted sagebrush sparrow densities were lower in these areas. In northwest Colorado, sage‐grouse may be an effective umbrella for Brewer’s sparrows, green‐tailed towhees, and sage thrashers, but sage‐grouse habitat does not appear to capture areas that support high sagebrush sparrow densities. A multi‐species focus may be the best management and conservation strategy for several species of concern, especially those with conflicting habitat requirements.

Journal article icon

A tool for projecting rangeland vegetation response to management and climate

View article.

New technologies may enhance management by enabling quantitative testing of assumptions of vegetation response to climate and management. State-and-transition simulation models can keep track of interactions that are too complicated for us to comprehend using only conceptual models. This tool takes conceptual state-and-transition models to the next level, fostering greater communication and dialogue with stakeholders. Based on the models and climate data used here, increased drought may enhance transitions between vegetative states. It is important to be as explicit and quantitative as possible as to how you expect vegetation states or ecosystem processes to transition between one another.

Narrow your search

Resource Types
No results found
Article / Book (872)
Synthesis / Tech Report (229)
Fact Sheet / Brief (203)
Field Guide (53)
Abstract (27)
Newsletter / Digest (17)
Story Map (17)
Resource Collection (11)
Bibliography (4)
Video (3)
Topic
No results found
Carbon (4)
Case Study (47)
Climate & Fire & Adaptation (161)
Decision Support (56)
Fire & Economics (30)
Fire Behavior (78)
Fire Communication & Education (97)
Fire Ecology & Effects (134)
Fire History (35)
Fire Policy (37)
Fire Regimes (78)
Fire Risk (33)
Firefighter Safety (37)
Fuels & Fuel Treatments (305)
Human Dimensions of Fire (55)
Invasive Species (226)
Landscape Analysis (70)
Monitoring (39)
Post-fire Environment & Management (104)
Rehabilitation (18)
Resistance & Resilience (74)
Restoration (229)
Sage-grouse (115)
Sagebrush (221)
Smoke (28)
Targeted Grazing (41)
Traditional Ecological Knowledge (16)
Weather Effects (42)
Wildland Urban Interface (73)

Stay Connected