Research and Publications
View article.
This analysis revealed that persistent unburned islands are not randomly distributed across the landscape. While the topography and vegetation fuel type that underlie persistent unburned islands differ from burned areas, these differences are dependent upon fire regime group and are less pronounced than what other studies have found. The topographic features that differed the most between persistent unburned islands and burned areas were terrain ruggedness, slope, and transformed aspect. We also found that, as unburned islands increased in persistence (i.e., remained unburned for an increasing number of overlapping fires), they decreased in size and shape complexity.
View paper.
Vegetation responses to environmental change may be mediated through changes in bud bank dynamics and phenology. Environmental change that depletes the bud bank or prohibits its formation likely results in a loss of vegetation resilience and plant species diversity. Standardization of bud sampling, examination of bud banks in more ecosystems and their response to environmental variation and disturbance regimes, employment of stage-structured bud bank modelling and evaluation of the cost of bud bank construction and maintenance will benefit this expanding field of research.
View article.
Tackifiers are long‐chain carbon compounds used for soil stabilization and hydroseeding and could provide a vehicle for biological soil crust restoration. We examined the sensitivity of two dryland mosses, Bryum argenteum and Syntrichia ruralis, to three common tackifiers- guar, psyllium, and polyacrylamide (PAM) for erosion control and revegetation. When compared to water, guar tended to decrease growth, psyllium tended to increase growth, and PAM’s effects were generally neutral to positive. Within tackifier types, increasing concentrations of guar tended to decrease growth, while increasing concentrations of psyllium tended to increase growth. Changes in PAM concentrations had little effect on growth. Increases in guar and psyllium lowered pH and increased P and K. Psyllium and PAM yielded promising results as potential agents of dispersal and adherence of dryland mosses in field restoration.
View paper.
This study sampled tree age and stand characteristics of isolated aspen forests in the arid Great Basin (USA) to determine if: (1) aspen communities are more fire‐dependent and seral or fire‐independent and stable; (2) ungulate browsing inhibits aspen stability; and (3) temporal patterns of vegetative reproduction (i.e., ramet establishment or “suckering”) are correlated with climate. Aspen size and age class densities strongly fit negative exponential distributions, whether grouped geographically or by functional type, suggesting landscape‐scale persistence. Continuous age distributions and high proportions of recruitment‐sized to overstory trees suggest stability at stand‐scales, with exceptions including stands with higher browsing pressure. Few stands had evidence of fire, and relationships between dead tree size and variability in live tree size suggest a lack of fire‐dependency. Several five‐year averaged climate variables and one sea surface temperature index were correlated with aspen ramet establishment densities over time, with strongest relationships occurring ~5 years prior to establishment year, often followed by inverse relationships ~1 year after. Indeed, aspen establishment density for a recent 41‐year period was reliably reconstructed using antecedent climate conditions derived from a single drought index. Temporally synchronized aspen ramet establishment across the study region may be due to climate‐driven storage of nonstructural carbohydrate reserves in clonal root systems later used for regeneration. Complex regeneration dynamics of these self‐sustaining aspen stands, especially sensitivity to climate variability, suggest they may serve as harbingers of ecological change in the arid Great Basin and in other aspen populations near their range margin.
View article.
For this study, we used big sagebrush (Artemisia tridentata) as a model species to explore whether including human‐induced factors improves the fit of the species distribution models (SDM). Models including fire attributes and restoration treatments performed better than those including only climate and topographic variables. Number of fires and fire occurrence had the strongest relative effects on big sagebrush occurrence and cover, respectively. The models predicted that the probability of big sagebrush occurrence decreases by 1.2% (95% CI: −6.9%, 0.6%) when one fire occurs and cover decreases by 44.7% (95% CI: −47.9%, −41.3%) if at least one fire occurred over the 36 year period of record. Restoration practices increased the probability of big sagebrush occurrence but had minimal effect on cover. Our results demonstrate the potential value of including disturbance and land management along with climate in models to predict species distributions.
View paper.
In this study, we evaluated associations between soil properties and gradients in sagebrush canopy structure in stands that had successfully reestablished after fire and subsequent seeding treatments. Using a dataset collected across the Great Basin, USA, of sagebrush stands that had burned and reestablished between 1986 and 2013, we tested soil depth and texture, soil surface classification, biological soil crusts plus mean historical precipitation, solar heatload, and fire history as modeling variables to explore gradients in sagebrush canopy structure growth in terms of cover, height, and density. Deeper soils were associated with greater sagebrush canopy structure development in terms of plant density and percent cover, coarser textured soils were associated with greater sagebrush cover and density, and more clayey soils were typically associated with greater height. Biological crust presence was also positively associated with enhanced sagebrush canopy growth, but adding more demographically or morphologically explicit descriptions of biocrust communities did not improve explanatory power. Increasing heatload had a negative effect on sagebrush canopy structure growth, and increased mean annual precipitation was only associated with greater sagebrush height. Given that conservation and restoration of the sagebrush steppe ecosystems has become a priority for land managers, the associations we identify between gradients in post‐fire sagebrush canopy structure growth and field‐identifiable soil characteristics may improve planning of land treatments for sagebrush restoration and the understanding of semi‐arid ecosystem functioning and post‐disturbance dynamics.
View article.
The apparent failure of ecosystems to recover from increasingly widespread disturbance is a global concern. Despite growing focus on factors inhibiting resilience and restoration, we still know very little about how demographic and population processes influence recovery. Using inverse and forward demographic modelling of 531 post‐fire sagebrush populations across the western US, we show that demographic processes during recovery from seeds do not initially lead to population growth but rather to years of population decline, low density, and risk of extirpation after disturbance and restoration, even at sites with potential to support long‐term, stable populations. Changes in population structure, and resulting transient population dynamics, lead to a > 50% decline in population growth rate after disturbance and significant reductions in population density. Our results indicate that demographic processes influence the recovery of ecosystems from disturbance and that demographic analyses can be used by resource managers to anticipate ecological transformation risk.
View brief.
This brief explains how to find out what is in that container of seed. It is divided into three sections:
- How to decipher a seed analysis label
- How to comprehend a certified seed label
- How to take a representative seed sample for analysis
View guide.
The primary goal of seed collecting by European Native Seed Conservation Network (ENSCONET) is the long-term conservation in seed banks of representative samples of the genetic diversity of seed-bearing plant populations. The methods included in this collecting manual should be widely applicable (including outside Europe), with adaptation as necessary to local circumstances. Where the biology of the species is well known, the methods may be made more sophisticated. The quality of seed collections depends upon the expertise of the collector, the circumstances at the collection site on the day of collection, and the knowledge available. This guide helps to address the latter.
View guide.
This protocol outlines the procedures for making seed collections for Seeds of Success, part of the national Native Plant Materials Development Program. The purpose of the Seeds of Success program in the United States is to establish a national, high quality, accurately identified and well documented native plant species seed collection. All seed collections made following this protocol can be used to support development of geographically appropriate native plant materials for restoration and emergency fire rehabilitation. Each seed collection should comprise of a significant representation of the genetic variation within the sampled population. The national collection acts as the basis for off site (ex situ) conservation and, where and when appropriate, can be used for study and multiplication in the native plant materials development program.