Research and Publications

Open book with lines simulating text on left and right pages

Unintended habitat loss on private land from grazing restrictions on public rangelands

View article.

This study predicts that restricting grazing of public lands by 50% would result in the loss of an additional 171,400 ha of sage‐grouse habitat on private lands by 2050, on top of the 842,000 ha predicted to be lost under business as usual. Most of this conversion would affect sage‐grouse mesic habitat, 75% of which occurs on private land and is vital to the species during brood rearing. Under such policy changes, we estimate that an additional 105,700 ha (3.24%) of sage‐grouse mesic habitat held on private land in the study region would be directly lost by 2050, and the cumulative area affected by fragmentation would be much higher.

A simulated newspaper showing the middle fold and colored blocks for headings and lines for text

SageSTEP News: Issue 33 – Fire effects and longevity of PJ mastication treatments

View newsletter.

In this issue:

  • Wildfire and SageSTEP research: An inevitable collision
  • Treatment longevity and changes in surface fuel loads after pinyon-juniper mastication
Open book with lines simulating text on left and right pages

Low-tech riparian and wet meadow restoration increases productivity and resilience in semiarid rangelands

View article.

In this study, we use freely available, satellite remote sensing to explore changes in vegetation productivity(normalized difference vegetation index) of three distinct, low-tech, riparian and wet meadow restoration projects. Case studies are presented that range in geographic location (Colorado, Oregon, and Nevada), restoration practice (Zeedyk structures,beaver dam analogs, and grazing management), and time since implementation. Restoration practices resulted in increased vegetation productivity of up to 25% and increased annual persistence of productive vegetation. Improvements in productivity with time since restoration suggest that elevated resilience may further enhance wildlife habitat and increase forage production.Long-term, documented outcomes of conservation are rare; we hope our findings empower practitioners to further monitor and explore the use of low-tech methods for restoration of ecohydrologic processes at meaningful spatial scales.

Open book with lines simulating text on left and right pages

Assessing riparian restoration effectiveness with ClimateEngine.org data

View article.

This study presents a method and case study to evaluate the effectiveness of restoration of riparian vegetation using a web-based cloud-computing and visualization tool (ClimateEngine.org) to access and process remote sensing and climate data. In each study area, the post-restoration NDVI-precipitation relationship was statistically distinct from the pre-restoration relationship, suggesting a change in the fundamental relationship between precipitation and NDVI resulting from stream restoration. We infer that the in-stream structures, which raised the water table in the adjacent riparian areas, provided additional water to the streamside vegetation that was not available before restoration and reduced the dependence of riparian vegetation on precipitation. This approach provides a cost-effective, quantitative method for assessing the effects of stream restoration projects on riparian vegetation.

Open book with a bar chart on left page and line graph and lines simulating text on the right page

Fire regimes of mountain big sagebrush communities – Review from FEIS

View synthesis.

This synthesis summarizes information available in the scientific literature on historical patterns and contemporary changes in fuels and fire regimes in mountain big sagebrush communities. This literature suggests that presettlement fires in the sagebrush biome were both lightning- and human-caused. Peak fire season occurred between April and October and varied geographically. Wildfires were high-severity, stand-replacement fires. Fire frequency estimates range from decades to centuries, depending on the applicable scale, methods used, and metrics calculated. Fire frequency was influenced by site characteristics. Because mountain big sagebrush communities occur over a productivity gradient driven by soil moisture and temperature regimes, fire regimes likely varied across the gradient, with more frequent fire on more productive sites that supported more continuous fine fuels. Sites dominated by mountain big sagebrush burned more frequently than sites dominated by Wyoming big sagebrush, because the former tend to be more productive. Mountain big sagebrush communities adjacent to fire-prone forest types (e.g., ponderosa pine) may have had more frequent fires than those adjacent to less fire-prone types (e.g., pinyon-juniper) and those far from forests and woodlands. Most fires were likely small (less than ~1,200 acres (~500 ha)), and large fires (>24,000 acres (10,000 ha)) were infrequent. Historically, large fires in big sagebrush were most likely after one or more relatively wet years or fire reseasons that favored growth of associated grasses, allowing fine fuels to accumulate and become more continuous.

Open book with a bar chart on left page and line graph and lines simulating text on the right page

Fuels guide and database for intact and invaded big sagebrush ecological sites – User manual

View guide.

The Fuels Guide and Database (FGD) is intended to provide fuel loading and vegetation information for big sagebrush (Artemisia tridentata) ecological sites in the Morley Nelson Snake River Birds of Prey National Conservation Area (NCA) in southern Idaho. Sagebrush ecosystems in the NCA and throughout much of the Great Basin are highly influenced by non-native plants that alter successional trajectories and promote frequent wildfires, especially due to fine-fuel loadings that are highly variable over time and space. These dynamic fuel conditions can increase uncertainty when attempting to project fire risk and fire behavior. The FGD was developed to help quantify and assess these dynamic fuel loadings, and it provides access to fuels data across a range of conditions, from relatively intact sagebrush-bunchgrass communities to degraded communities dominated by nonnative annual grasses and forbs. The FGD can be queried for a variety of environmental conditions, and it provides tabular data, reports, and photographic records of fuels based on user queries. This report describes the FGD, including overall data content and data-collection methods, as well as instructions for installing and using the database.

Fire regime on a cultural landscape: Navajo Nation

View article.

We worked with the Navajo Nation Forestry Department to evaluate the historical role of fire on a 50 km2 landscape bisected by a natural mountain pass. The landscape experienced frequent fires from 1644, the earliest fire date with sufficient sample depth, to 1920, after which fire occurrence was interrupted. The mean fire interval (MFI) for fire dates scarring 10% or more of the samples was 6.25 years; there were 13 large‐scale fires identified with the 25% filter with an MFI of 22.6 years. Fire regimes varied over the landscape, with an early reduction in fire occurrence after 1829, likely associated with pastoralism, in the outer uplands away from the pass. In contrast, the pass corridor had continuing fire occurrence until the early 20th century. Fires were synchronized with large‐scale top‐down climatic oscillations (drought and La Niña), but the spatially explicit landscape sampling design allowed us to detect bottom‐up factors of topography, livestock grazing, and human movement patterns that interacted in complex ways to influence the fire regime at fine scales. Since the early 20th century, however, fires have been completely excluded. Fuel accumulation in the absence of fire and warming climate present challenges for future management.

Journal article icon

Does wildfire open a policy window? Local government and community adaptation after fire in the US

View article.

We examined how destructive wildfire affected progress toward becoming fire adapted in eight locations in the United States. We found that community-level adaptation following destructive fires is most common where destructive wildfire is novel and there is already government capacity and investment in wildfire regulation and land use planning. External funding, staff capacity, and the presence of issue champions combined to bring about change after wildfire. Locations with long histories of destructive wildfire, extensive previous investment in formal wildfire regulation and mitigation, or little government and community capacity to manage wildfire saw fewer changes. Across diverse settings, communities consistently used the most common tools and actions for wildfire mitigation and planning. Nearly all sites reported changes in wildfire suppression, emergency response, and hazard planning documents. Expansion in voluntary education and outreach programs to increase defensible space was also common, occurring in half of our sites, but land use planning and regulations remained largely unchanged. Adaptation at the community and local governmental level therefore may not axiomatically follow from each wildfire incident, nor easily incorporate formal approaches to minimizing land use and development in hazardous environments, but in many sites wildfire was a focusing event that inspired reflection and adaptation.

Journal article icon

High-severity fire: Key drivers and mapping its probability across western US forests

View article.

Here, we explore the drivers of high-severity fire for forested ecoregions in the western US over the period 2002–2015. We found that live fuel, on average, was the most important factor driving high-severity fire among ecoregions (average relative influence = 53.1%) and was the most important factor in 14 of 19 ecoregions. Fire weather was the second most important factor among ecoregions (average relative influence = 22.9%) and was the most important factor in five ecoregions. Climate (13.7%) and topography (10.3%) were less influential. We also predicted the probability of high-severity fire, were a fire to occur, using recent (2016) satellite imagery to characterize live fuel for a subset of ecoregions in which the model skill was deemed acceptable (n = 13). These ‘wall-to-wall’ gridded ecoregional maps provide relevant and up-to-date information for scientists and managers who are tasked with managing fuel and wildland fire.

Journal article icon

Recovery of soil fungi following fire

View article.

In the Deschutes National Forest, researchers with the USFS Pacific Northwest Research Station, Oregon State University, and Kansas State University conducted a study to compare the effects of low-intensity and high-intensity burns on soil organisms and nutrients. The high-intensity burns were simulated by burning “mega-logs,” a proxy for naturally occurring large downed wood. They established 12 sites and collected pre- and postburn soil samples and continuous temperature recordings during the fire. As expected, the soil on the mega-log sites experienced intense heating. High temperatures penetrated 4 inches below the surface but no farther than 12 inches, and soil carbon and organic matterderived nutrients were volatized. There was also a substantial loss of nearly all the existing microbial communities. Within one week, however, fungi had returned; ascomycete fungi, such as morels, dominated the sites. Ponderosa pine seedlings were colonized by ectomycorrhizal fungi within four months.

Narrow your search

Stay Connected