Research and Publications
View article.
We hypothesized that linear projects were more efficient at intercepting individual fire events over larger spatial domains, whereas radial projects conferred a higher level of network redundancy in terms of the length of the fuel break exposed to fires. We simulated implementation of the alternative project geometries and then examined fuel break-wildfire spatial interactions using a library of simulated fires developed in prior work. The results supported the hypothesis, with linear projects exhibiting substantially greater efficiency in terms of intercepting fires over larger areas, whereas radial projects had a higher interception length given a fire encountered a project. Adding economic objectives made it more difficult to obtain alternative project geometries, but substantially increased net revenue from harvested trees. We discuss how the model and results can be used to further understand decision tradeoffs and optimize the implementation of planned fuel break networks in conjunction with landscape conservation, protection, and restoration management in fire prone regions.
View article.
We examined the hourly diurnal cycle of 23,557 fires and identified 1,095 overnight burning events (OBEs, each defined as a night when a fire burned through the night) in North America during 2017–2020 using geostationary satellite data and terrestrial fire records. A total of 99% of OBEs were associated with large fires (>1,000 ha) and at least one OBE was identified in 20% of these large fires. OBEs were early onset after ignition and OBE frequency was positively correlated with fire size. Although warming is weakening the climatological barrier to night-time fires6, we found that the main driver of recent OBEs in large fires was the accumulated fuel dryness and availability (that is, drought conditions), which tended to lead to consecutive OBEs in a single wildfire for several days and even weeks. Critically, we show that daytime drought indicators can predict whether an OBE will occur the following night, which could facilitate early detection and management of night-time fires. We also observed increases in fire weather conditions conducive to OBEs over recent decades, suggesting an accelerated disruption of the diurnal fire cycle.
View synthesis.
Increased understanding of how mechanical thinning, prescribed burning, and wildfire affect subsequent wildfire severity is urgently needed as people and forests face a growing wildfire crisis. In response, we reviewed scientific literature for the US West and completed a meta-analysis that answered three questions: (1) How much do treatments reduce wildfire severity within treated areas? (2) How do the effects vary with treatment type, treatment age, and forest type? (3) How does fire weather moderate the effects of treatments? We found overwhelming evidence that mechanical thinning with prescribed burning, mechanical thinning with pile burning, and prescribed burning only are effective at reducing subsequent wildfire severity, resulting in reductions in severity between 62% and 72% relative to untreated areas. In comparison, thinning only was less effective – underscoring the importance of treating surface fuels when mitigating wildfire severity is the management goal. The efficacy of these treatments did not vary among forest types assessed in this study and was high across a range of fire weather conditions. Prior wildfire had more complex impacts on subsequent wildfire severity, which varied with forest type and initial wildfire severity. Across treatment types, we found that effectiveness of treatments declined over time, with the mean reduction in wildfire severity decreasing more than twofold when wildfire occurred greater than 10 years after initial treatment. Our meta-analysis provides up-to-date information on the extent to which active forest management reduces wildfire severity and facilitates better outcomes for people and forests during future wildfire events.
Improve sampling plans by using propensity score matching to remove restoration trial selection bias
View article.
Failure to consider the non-random and selective deployment of restoration treatments by managers leads to faulty inference on their effectiveness. However, tools such as propensity-score matching can be used to remove the bias from analyses of the outcomes of management trials or to devise sampling plans that efficiently protect against the bias.
View article.
Chemical herbicides increased soil mineral nitrogen in proportion to their negative effects on plant cover for 2 years after treatments in all sites and increased soil water and net N mineralization (measured at one site) but did not affect total carbon, nitrogen, or organic matter. Invertebrate responses to herbicides varied by site, and invertebrates increased with chemical herbicides at the highest, wettest site. We show that herbicide treatments can exacerbate pulses of mineral nutrients, which previous studies have shown can weaken ecosystem resistance to invasion. Thus, restoration strategies that increase the likelihood that desired plants can capture mineralized nutrients after herbicide application will likely be more successful.
View article.
Predicted fire-moderation benefits over the first 4 years of fuel break implementation were modest and variable, but, generally, increases in exotic annual grasses and their associated fire risks were not observed. Nonetheless, ancillary evidence from shrublands would suggest that treatment-induced shifts from shrub to herbaceous fuel dominance are expected to improve conditions for active fire suppression in ways not readily represented in available fire models.
View article.
We evaluated the effects of controlling medusahead with prescribed burning and imazapic application followed 1 yr later with drill-seeding large perennial bunchgrasses at two seeding rates (medium and high) for more than a decade post seeding. Large perennial bunchgrass cover and density was > 16- and > 4-fold greater in revegetation treatments compared with the untreated control 11 yr after seeding, respectively. Invasive annual grass abundance was ∼twofold greater in the untreated control compared with the revegetation treatments. These results suggest that revegetation efforts in medusahead-invaded rangelands can have persistent ecological benefits (increased perennials and decreased invasive annuals). The high seeding rate resulted in more perennial bunchgrass and less invasive annual grass compared with the medium seeding rate over the duration of the study, suggesting that high seeding rates may be needed to maximize benefits. Revegetation of medusahead-invaded rangelands can have long-lasting effects, though high establishment of perennial bunchgrasses is likely necessary for success.
View article.
We imposed spring-applied annual grass control treatments followed by fall seeding of a perennial bunchgrasses and then measured vegetation response for the next 3 yr in cheatgrass and medusahead-invaded communities. Spring treatments that included imazapic application (at a low rate), followed by fall seeding of perennial bunchgrasses, successfully controlled annual grasses and substantially increased perennial bunchgrass cover and density. Spring burning and glyphosate herbicide application, without imazapic, were not successful in promoting substantial increases in perennial bunchgrass cover. Spring burning before imazapic application was the most successful treatment for rehabilitation seeding. By the third yr after seeding, perennial bunchgrass cover was 17% in the spring burn-imazapic treatment, greater than what is generally found in intact Wyoming big sagebrush-bunchgrass communities in this region. The results of this study provide strong evidence that spring-applied control treatments including imazapic can be part of successful revegetation efforts, thereby decreasing some of the logistical challenges associated with revegetation of annual grass−invaded sagebrush rangelands.
View article.
We tested how sagebrush transplant survival and size (canopy volume) are affected by age at the time of planting (10 classes, 6−24 wk), planting season (fall versus spring), and invasive annual grass competition (low/high) with a randomized factorial design over 2 yr. Survival was lower for age classes under 10 or 12 wk (in yr 1 and 2, respectively) but relatively similar from 12 to 24 wk. Fall-planted transplants had lower survival but increased canopy volume compared with spring-planted transplants. Survival and canopy volume decreased with competition with annual grasses. Our results suggest that land managers should consider planting younger transplants than previously thought and controlling invasive annual grasses before planting sagebrush transplants to increase long-term survival and canopy volume.
View article.
Wildland fire incident commanders make wildfire response decisions within an increasingly complex socioenvironmental context. Threats to human safety and property, along with public pressures and agency cultures, often lead commanders to emphasize full suppression. However, commanders may use less-than-full suppression to enhance responder safety, reduce firefighting costs, and encourage beneficial effects of fire. This study asks: what management, socioeconomic, environmental, and fire behavior characteristics are associated with full suppression and the less-than-full suppression methods of point-zone protection, confinement/ containment, and maintain/monitor? We analyzed incident report data from 374 wildfires in the United States northern Rocky Mountains between 2008 and 2013. Regression models showed that full suppression was most strongly associated with higher housing density and earlier dates in the calendar year, along with non-federal land jurisdiction, regional and national incident management teams, human-caused ignitions, low fire-growth potential, and greater fire size. Interviews with commanders provided decision-making context for these regression results. Future efforts to encourage less-than-full suppression should address the complex management context, in addition to the biophysical context, of fire response.