Phenology forecasting models for detection and management of invasive annual grasses
View article.
We created range-wide phenology forecasts for two problematic invasive annual grasses: cheatgrass, and red brome . We tested a suite of 18 mechanistic phenology models using observations from monitoring experiments, volunteer science, herbarium records, timelapse camera imagery, and downscaled gridded climate data to identify the models that best predicted the dates of flowering and senescence of the two invasive grass species. We found that the timing of flowering and senescence of cheatgrass and red brome were best predicted by photothermal time models that had been adjusted for topography using gridded continuous heat-insolation load index values. Phenology forecasts based on these models can help managers make decisions about when to schedule management actions such as grazing to reduce undesirable invasive grasses and promote forage production, quality, and biodiversity in grasslands; to predict the timing of greatest fire risk after annual grasses dry out; and to select remote sensing imagery to accurately map invasive grasses across topographic and latitudinal gradients. These phenology models also have the potential to be operationalized for within-season or within-year decision support.