Variability in weather and site properties affect fuel and fire behavior following fuel treatments in semiarid sagebrush-steppe

Journal article icon

View article.

Fuel-treatments targeting shrubs and fire-prone exotic annual grasses (EAGs) are increasingly used to mitigate increased wildfire risks in arid and semiarid environments, and understanding their response to natural factors is needed for effective landscape management. Using field-data collected over four years from fuel-break treatments in semiarid sagebrush-steppe, we asked 1) how the outcomes of EAG and sagebrush fuel treatments varied with site biophysical properties, climate, and weather, and 2) how predictions of fire behavior using the Fuel Characteristic Classification System fire model related to land-management objectives of maintaining fire behavior expected of low-load, dry-climate grasslands. Generalized linear mixed effect modeling with build-up model selection was used to determine best-fit models, and marginal effects plots to assess responses for each fuel type. EAG cover decreased as antecedent-fall precipitation increased and increased as antecedent-spring temperatures and surface soil clay contents increased. Herbicides targeting EAGs were less effective where pre-treatment EAG cover was >40 % and antecedent spring temperatures were >9.5 °C. Sagebrush cover was inversely related to soil clay content, especially where clay contents were >17 %. Predicted fire behavior exceeded management objectives under 1) average fire weather conditions when EAG or sagebrush cover was >50 % or >26 %, respectively, or 2) extreme fire weather conditions when EAG or sagebrush cover was >10 % or >8 %, respectively. Consideration of the strong effects of natural variability in site properties and antecedent weather can help in justifying, planning and implementing fuel-treatments.

Stay Connected