Article / Book

Journal article icon

Consequential lightning-caused wildfires and the “let burn” narrative

View article.

Initial strategies were driven by resource objectives for only six of the 32 wildfires; firefighter hazard mitigation was the primary driver of all others. No fire exhibited every characteristic of the Tamarack Fire. Analog fires accounted for a small percent (3.4%) of large (> 121 ha) USFS lightning-caused ignitions. These fires were responsible for 61.6% of structures destroyed and 25.8% of total personnel commitments of large lightning-caused USFS fires.

Journal article icon

Identifying opportunity hot spots for reducing the risk of wildfire-caused carbon loss in western US forests

View article.

We found that relative to their total forest area, California, New Mexico, and Arizona contained the greatest proportion of carbon highly vulnerable to wildfire-caused loss. We also observed widespread opportunities in the western US for using proactive forest management to reduce the risk of wildfire-caused carbon loss, with many areas containing opportunities for simultaneously mitigating the greatest risk from wildfire to carbon and human communities. Finally, we highlighted collaborative and equitable processes that provide pathways to achieving timely climate- and wildfire-mitigation goals at opportunity hot spots.

Journal article icon

Human and climatic influences on wildfires ignited by recreation in national forests in WA, OR, and CA

View article.

From 1992–2020, 50% of recreation-caused ignitions in these three states occurred on lands managed by the U.S. Forest Service. The mean annual number of recreation-caused ignitions on national forests in the three states during this period was relatively stable, about 500, whereas recreation-caused ignitions within other jurisdictions decreased by 40%. Improved understanding of the impact of human and climatic factors on recreation-caused ignitions could provide valuable insights for shaping policy and management decisions. We found that mean annual densities of recreation-caused ignitions on national forests were 7 times greater within 1 km of designated campgrounds than >1 km from campgrounds, although 80% of recreation-caused ignitions occured >1 km from designated campgrounds. Ignition density in campgrounds increased non-linearly with overnight visitor density; a doubling of visitor density was associated with a ∼40% increase in ignitions. Large (≥4 ha) recreation-caused wildfires, especially those ignited in designated campgrounds, tended to occur concurrent with drought and 1–2 years after anomalously wet conditions. These results suggest that accounting for drought in implementation of fire restrictions, and targeting wildfire-prevention awareness to recreational users outside designated campgrounds, might reduce the likelihood of recreation-caused ignitions.

Journal article icon

Prioritizing science efforts to inform decision making on public lands

View article.

We used the National Environmental Policy Act to identify four types of science information needed for making decisions relevant to public lands: (1) data on resources of concern, (2) scientific studies relevant to potential effects of proposed actions, (3) methods for quantifying potential effects of proposed actions, and (4) effective mitigation measures. We then used this framework to analyze 70 Environmental Assessments completed by the Bureau of Land Management in Colorado. Commonly proposed actions were oil and gas development, livestock grazing, land transactions, and recreation. Commonly analyzed resources included terrestrial wildlife, protected birds, vegetation, and soils. Focusing research efforts on the intersection of these resources and actions, and on developing and evaluating the effectiveness of mitigation measures to protect these resources, could strengthen the science foundation for public lands decision making.

Journal article icon

Future regional increases in simultaneous large western US wildfires

View article.

The results project increases in the number of simultaneous 1000+ acre (4+ km2) fires in every part of the Western USA at multiple return periods. These increases are more pronounced at higher levels of simultaneity, especially in the Northern Rockies region, which shows dramatic increases in the recurrence of high return levels.

Journal article icon

Proportion of forest area burned at high-severity increases with increasing forest cover and connectivity in western US

View article.

High-severity burn area increased with increasing fuel availability and connectivity and decreased with increasing heterogeneity. In 2020, multiple large high-severity burn areas occurred in forests with high fuel availability, which only had small high-severity burn areas prior to 2020.

Journal article icon

A multi-ecosystem prioritization framework to balance competing habitat conservation needs of multiple species in decline

View article.

Management prioritized for a single species (Brewer’s Sparrow) provided the greatest per-unit-effort benefits for that species but resulted in the lowest population outcomes for all other species considered. In comparison, prioritizations for multiple species within a single ecosystem (i.e., pinyon–juniper or sagebrush) resulted in larger population benefits for species associated with that ecosystem and reduced detrimental effects on non-target species associated with another ecosystem. For example, single species management for Brewer’s Sparrow resulted in an average increase of 1.38% for sagebrush-associated species and a 4.58% decrease for pinyon–juniper associated species. In contrast, when managing for multiple sagebrush-associated species sagebrush-associated songbird populations increased by 3.98% and pinyon–juniper associated species decreased by 2.36%, on average.

Journal article icon

Contemporary wildfires are more severe compared to the historical reference period in dry conifer forests in the West

View article.

Study results indicate, that as a proportion of area burned, contemporary fires experienced 2.9 to 13.6 times more stand-replacing fire (depending on the ecoregion) compared to the pre-colonization period. Non-wilderness areas exhibit somewhat higher prevalence of stand-replacing fire, relative to the historical fire regime, than wilderness areas (where logging is prohibited). The relatively small difference between non-wilderness and wilderness suggests that fuel accumulation resulting from fire exclusion has played a larger role than historical logging activities on the prevalence of contemporary stand-replacing fire. Prescribed fires do not exhibit a higher prevalence of stand-replacing fire compared to the historical fire regime.

Journal article icon

Spot-fire distance increases for wildfires compared to Rx fires as grasslands transition to juniper woodlands

View article.

This study found prescribed fire used to control woody encroachment had lower maximum spot-fire distances compared to wildfires and, correspondingly, a lower amount of land area at risk to spot-fire occurrence. Under more extreme wildfire scenarios, spot-fire distances were 2 times higher in grasslands, and over 3 times higher in encroached grasslands and Juniperus woodlands compared to fires burned under prescribed fire conditions. Maximum spot-fire distance was 450% greater in Juniperus woodlands compared to grasslands and exposed an additional 14,000 ha of receptive fuels, on average, to spot-fire occurrence within the Loess Canyons Experimental Landscape. This study demonstrates that woody encroachment drastically increases risks associated with wildfire, and that spot fire distances associated with woody encroachment are much lower in prescribed fires used to control woody encroachment compared to wildfires.

Journal article icon

Fuel treatments in shrublands experiencing PJ expansion result in trade-offs between desired vegetation and increased fire behavior

View article.

While prescribed fire and mechanical treatments in shrublands experiencing tree expansion restored understory vegetation and prevented continued juniper and pinyon infilling and growth, these fuel treatments also increased modeled surface fire behavior. Thus, management tradeoffs occur between desired future vegetation and wildfire risk after fuel treatments.

Narrow your search

Stay Connected