Article / Book
View article.
We found strong support for top-down and bottom-up spatial and temporal controls on fire patterns. Fire weather was a main driver of large fire occurrence, but area burned was moderated by ignition frequencies and by areas of limited fuels and fuel contagion (i.e., fire fences). Landscapes comprised of >40% area in fire fences rarely experienced large fire years. When large fires did occur during the simulation period, a recovery time of 100–300 years or more was generally required to recover pre-fire vegetation patterns.
View article.
Climate change is increasing fire size, fire severity, and driving larger patches of high-severity fire. Many regions are predicted to experience an increase in fire severity where conditions are hotter and drier and changes in fire regimes are evident. Increased temperatures, drought conditions, fuels, and weather are important drivers of fire severity. Recent increases in fire severity are attributed to changes in climatic water deficit (CMD), vapor pressure deficit (VPD), evapotranspiration (ET), and fuels. Fire weather and vegetation species composition also influence fire severity. Future increases in fire severity are likely to impact forest resilience and increase the probability of forest type conversions in many ecosystems.
View article.
This research used in-depth interviews to explore variable support or opposition to three fuels-reduction projects occurring in the same region of north central Washington State, USA. Results indicate that differential support or opposition to each project stemmed from a unique combination of social factors operating in each locality (e.g., past history with fuels treatments, values for public land, environmental advocacy networks), the relationships that local populations had with agency members conducting each treatment, and the ways that managers engaged populations in the design of each treatment. We used existing frameworks for understanding collaborative potential/environmental conflict and for documenting the influence of local social context on adaptive wildfire actions to help explain emergent lessons about support or opposition to each project.
View article.
Using shrub, grass, and forb species from six locations in the western Great Basin, North America, we compared establishment, productivity, reproduction, phenology, and resistance to invaders for experimental communities with either sympatric or allopatric population associations. Each community type was planted with six taxa in outdoor mesocosms, measured over three growing seasons, and invaded with the annual grass Bromus tectorum in the final season. For most populations, the allopatric or sympatric status of neighbors was not important. However, in some cases, it was beneficial for some species from some locations to be planted with allopatric neighbors, while others benefited from sympatric neighbors, and some of these responses had large effects. For instance, the Elymus population that benefited the most from allopatry grew 50% larger with allopatric neighbors than in single origin mesocosms. This response affected invasion resistance, as B. tectorum biomass was strongly affected by productivity and phenology of Elymus spp., as well as Poa secunda. Our results demonstrate that, while community composition can affect plant performance in semi-arid plant communities, assembling communities from sympatric populations is not sufficient to ensure high productivity and invasion resistance. Instead, we observed an idiosyncratic interaction between sampling effects and evolutionary history, with the potential for seed source of individual populations to have community-level effects.
View article.
More frequent, larger, and severe wildfires necessitate greater resources for fire-prevention, fire-suppression, and postfire restoration activities, while decreasing critical ecosystem services, economic and recreational opportunities, and cultural traditions. Increased flexibility and better prioritization of management activities based on ecological needs, including commitment to long-term prefire and postfire management, are needed to achieve notable reductions in uncharacteristic wildfire activity and associated negative impacts. Collaboration and partnerships across jurisdictional boundaries, agencies, and disciplines can improve consistency in sagebrush-management approaches and thereby contribute to this effort. Here, we provide a synthesis on sagebrush wildfire trends and the impacts of uncharacteristic fire regimes on sagebrush plant communities, dependent wildlife species, fire-suppression costs, and ecosystem services. We also provide an overview of wildland fire coordination efforts among federal, state, and tribal entities.
View article.
By connecting high-resolution estimates of fine fuel to climatic, biophysical and land-use factors, wildfire exposure, and a natural resource value at risk, we provide a pro-active and adaptive framework for fire risk management within highly variable and rapidly changing dryland landscapes.
View article.
The West Coast both experiences the largest smoke exposures and contributes most to the burden of smoke PM2.5 in the western US. Applying prescribed burns on the coast yields large benefits for the West, while doing so in other states has relatively smaller impacts. Larger prescribed burns may reduce smoke impacts from future large wildfires, but few such burns have occurred in key areas.
View article.
We use a unique dataset derived from contemporary (∼2016) remeasurement of 440 historical quadrats (∼4m2) in the central Sierra Nevada, California, in which overstory trees, tree regeneration, and microsite conditions were measured and mapped both before and after logging in 1928–1929. Pine relative abundance changed little with logging and declined to 5% of the contemporary regeneration layer. In contrast, the relative abundance of incense-cedar regeneration (32%) already outpaced its representation in the overstory (17% by basal area) before logging and proceeded to dominate the contemporary understory (49%). We did not find strong evidence for the positive influence of gaps on pine regeneration in any time period. However, across species, post-logging skid trails were positively associated with regeneration and woody debris was negatively associated with regeneration in at least one time period. We discovered that the occurrence of advance regeneration (regeneration that preceded and survived logging) best predicted new contemporary trees across all species. For shade-tolerant species, post-logging regeneration that established up to ten years after logging was also associated with new contemporary trees. In contrast, the few pine that transitioned into the contemporary canopy during the study period all established prior to logging. Our work provides evidence that low pine abundance in the regeneration layer as early as 1928 contributed to low rates of pine in the overstory in 2016, showcasing that the decline of pine likely began before logging and official federal fire suppression policies. We suggest that fire exclusion before logging perpetuated shifts towards shade-tolerant and fire-intolerant species in the regeneration layer that were early and lasting.
View article.
Here, we present a detailed characterization of REBURN — a geospatial modeling framework designed to simulate reburn dynamics over large areas and long time frames. We interpret fire-vegetation dynamics for a large testbed landscape in eastern Washington State, USA. The landscape is comprised of common temperate forest and nonforest vegetation types distributed along broad topo-edaphic gradients. Each pixel in a vegetation type is represented by a pathway group (PWG), which assigns a specific state-transition model (STM) based on that pixel’s biophysical setting. STMs represent daily simulated and annually summarized vegetation and fuel succession, and wildfire effects on forest and nonforest succession. Wildfire dynamics are driven by annual ignitions, fire weather and topographic conditions, and annual vegetation and fuel successional states of burned and unburned pixels.
View article.
To inform wildland fire management under these conditions, we developed high-resolution (10-m) estimates of fine fuel across the Altar Valley in southern Arizona, USA, which spans dryland, grass-dominated ecosystems that are administered by multiple land managers and owners. We coupled field measurements at the end of the 2021 growing season with Sentinel-2 satellite imagery and vegetation indices acquired during and after the growing season to develop predictions of fine fuel across the entire valley. We then assessed how climate, soil, vegetation, and land-use factors influenced the amount and distribution of fine fuels. We connected fine fuels to fire management points, past ignition history, and socio-economic vulnerability to evaluate wildfire exposure and assessed how fuel related to habitat of the endangered masked bobwhite quail (Colinus virginianus ridgwayi).