Article / Book
View article.
Study results indicate, that as a proportion of area burned, contemporary fires experienced 2.9 to 13.6 times more stand-replacing fire (depending on the ecoregion) compared to the pre-colonization period. Non-wilderness areas exhibit somewhat higher prevalence of stand-replacing fire, relative to the historical fire regime, than wilderness areas (where logging is prohibited). The relatively small difference between non-wilderness and wilderness suggests that fuel accumulation resulting from fire exclusion has played a larger role than historical logging activities on the prevalence of contemporary stand-replacing fire. Prescribed fires do not exhibit a higher prevalence of stand-replacing fire compared to the historical fire regime.
View article.
This study found prescribed fire used to control woody encroachment had lower maximum spot-fire distances compared to wildfires and, correspondingly, a lower amount of land area at risk to spot-fire occurrence. Under more extreme wildfire scenarios, spot-fire distances were 2 times higher in grasslands, and over 3 times higher in encroached grasslands and Juniperus woodlands compared to fires burned under prescribed fire conditions. Maximum spot-fire distance was 450% greater in Juniperus woodlands compared to grasslands and exposed an additional 14,000 ha of receptive fuels, on average, to spot-fire occurrence within the Loess Canyons Experimental Landscape. This study demonstrates that woody encroachment drastically increases risks associated with wildfire, and that spot fire distances associated with woody encroachment are much lower in prescribed fires used to control woody encroachment compared to wildfires.
View article.
While prescribed fire and mechanical treatments in shrublands experiencing tree expansion restored understory vegetation and prevented continued juniper and pinyon infilling and growth, these fuel treatments also increased modeled surface fire behavior. Thus, management tradeoffs occur between desired future vegetation and wildfire risk after fuel treatments.
View article.
We found strong support for top-down and bottom-up spatial and temporal controls on fire patterns. Fire weather was a main driver of large fire occurrence, but area burned was moderated by ignition frequencies and by areas of limited fuels and fuel contagion (i.e., fire fences). Landscapes comprised of >40% area in fire fences rarely experienced large fire years. When large fires did occur during the simulation period, a recovery time of 100–300 years or more was generally required to recover pre-fire vegetation patterns.
View article.
Climate change is increasing fire size, fire severity, and driving larger patches of high-severity fire. Many regions are predicted to experience an increase in fire severity where conditions are hotter and drier and changes in fire regimes are evident. Increased temperatures, drought conditions, fuels, and weather are important drivers of fire severity. Recent increases in fire severity are attributed to changes in climatic water deficit (CMD), vapor pressure deficit (VPD), evapotranspiration (ET), and fuels. Fire weather and vegetation species composition also influence fire severity. Future increases in fire severity are likely to impact forest resilience and increase the probability of forest type conversions in many ecosystems.
View article.
This research used in-depth interviews to explore variable support or opposition to three fuels-reduction projects occurring in the same region of north central Washington State, USA. Results indicate that differential support or opposition to each project stemmed from a unique combination of social factors operating in each locality (e.g., past history with fuels treatments, values for public land, environmental advocacy networks), the relationships that local populations had with agency members conducting each treatment, and the ways that managers engaged populations in the design of each treatment. We used existing frameworks for understanding collaborative potential/environmental conflict and for documenting the influence of local social context on adaptive wildfire actions to help explain emergent lessons about support or opposition to each project.
View article.
Using shrub, grass, and forb species from six locations in the western Great Basin, North America, we compared establishment, productivity, reproduction, phenology, and resistance to invaders for experimental communities with either sympatric or allopatric population associations. Each community type was planted with six taxa in outdoor mesocosms, measured over three growing seasons, and invaded with the annual grass Bromus tectorum in the final season. For most populations, the allopatric or sympatric status of neighbors was not important. However, in some cases, it was beneficial for some species from some locations to be planted with allopatric neighbors, while others benefited from sympatric neighbors, and some of these responses had large effects. For instance, the Elymus population that benefited the most from allopatry grew 50% larger with allopatric neighbors than in single origin mesocosms. This response affected invasion resistance, as B. tectorum biomass was strongly affected by productivity and phenology of Elymus spp., as well as Poa secunda. Our results demonstrate that, while community composition can affect plant performance in semi-arid plant communities, assembling communities from sympatric populations is not sufficient to ensure high productivity and invasion resistance. Instead, we observed an idiosyncratic interaction between sampling effects and evolutionary history, with the potential for seed source of individual populations to have community-level effects.
View article.
More frequent, larger, and severe wildfires necessitate greater resources for fire-prevention, fire-suppression, and postfire restoration activities, while decreasing critical ecosystem services, economic and recreational opportunities, and cultural traditions. Increased flexibility and better prioritization of management activities based on ecological needs, including commitment to long-term prefire and postfire management, are needed to achieve notable reductions in uncharacteristic wildfire activity and associated negative impacts. Collaboration and partnerships across jurisdictional boundaries, agencies, and disciplines can improve consistency in sagebrush-management approaches and thereby contribute to this effort. Here, we provide a synthesis on sagebrush wildfire trends and the impacts of uncharacteristic fire regimes on sagebrush plant communities, dependent wildlife species, fire-suppression costs, and ecosystem services. We also provide an overview of wildland fire coordination efforts among federal, state, and tribal entities.
View article.
By connecting high-resolution estimates of fine fuel to climatic, biophysical and land-use factors, wildfire exposure, and a natural resource value at risk, we provide a pro-active and adaptive framework for fire risk management within highly variable and rapidly changing dryland landscapes.
View article.
The West Coast both experiences the largest smoke exposures and contributes most to the burden of smoke PM2.5 in the western US. Applying prescribed burns on the coast yields large benefits for the West, while doing so in other states has relatively smaller impacts. Larger prescribed burns may reduce smoke impacts from future large wildfires, but few such burns have occurred in key areas.