Article / Book

Journal article icon

Naturalized species drive functional trait shifts in plant communities

View article.

Our research shows that across deserts, grasslands, and forests, plant communities with higher abundance of naturalized species are more acquisitive above and belowground, shorter, more shallowly rooted, and less dependent on mycorrhizal symbionts for resource acquisition. These functional shifts likely drive observed changes in carbon storage, litter decomposition, and nutrient and water cycling in invaded ecosystems. This mechanistic understanding of functional community change is a crucial step toward predicting and mitigating impacts of naturalized and invasive species.

Journal article icon

Leveraging local habitat suitability models to enhance restoration benefits for species of conservation concern

View article.

Using the Gunnison sage-grouse as a case study, we leveraged existing resource selection function models to identify areas of high restoration potential across landscapes with variable habitat conditions and habitat-use responses. We also tested how this information could be used to improve restoration planning. We simulated change in model covariates across crucial habitats for a suite of restoration actions to generate heatmaps of relative habitat suitability improvement potential, then assessed the degree to which use of these heatmaps to guide placement of restoration actions could improve suitability outcomes. We also simulated new or worsening plant invasions and projected the resulting loss or degradation of habitats across space. We found substantial spatial variation in projected changes to habitat suitability and new habitat created, both across and among crucial habitats. Use of our heatmaps to target placement of restoration actions improved habitat suitability nearly fourfold and increased new habitat created more than 15-fold, compared to placements unguided by heatmaps. Our decision-support products identified areas of high restoration potential across landscapes with variable habitat conditions and habitat-use responses. We demonstrate their utility for strategic targeting of habitat restoration actions, facilitating optimal allocation of limited management resources to benefit species of conservation concern.

Defend and Grow the Core: Implementing the Sagebrush Conservation Design

This special issue of Rangeland Ecology and Management is dedicated to applying the Sagebrush Conservation Design (SCD) to improve conservation outcomes across the sagebrush biome in the face of pervasive ecosystem threats.

Articles included:

State of the sagebrush: Implementing the Sagebrush Conservation Design to save a biome
Closing the conservation gap: Spatial targeting and coordination are needed for to keep pace with sagebrush losses
Climate change amplifies declines in sagebrush ecological integrity
Well-connected core areas retain ecological integrity of sagebrush ecosystems amidst overall declines 2001–2021
Spatial prioritization of conifer management to defend and grow sagebrush cores
A strategic and science-based framework for management of invasive annual grasses in the sagebrush biome
Modeling cropland conversion risk to scale-up averted loss of core sagebrush rangelands
Characterizing wildfire risk for the Sagebrush Conservation Design
An assessment of conservation opportunities within sagebrush ecosystems of US National Parks and Wildlife Refuges
Tool to promote stepping down the Sagebrush Conservation Design to local conservation planning
Exploring the sage grouse initiative’s role in defending and growing sagebrush core areas
Satellite remote sensing to assess shrubland vegetation responses to large-scale juniper removal in the northern Great Basin
Cooperative conservation actions improve sage-grouse population performance within the bi-state distinct population segment
Evaluating the Sagebrush Conservation Design Strategy through the performance of a sagebrush indicator species
How a Sagebrush Conservation Strategy benefits rangeland birds
Carbon Security Index: Novel approach to assessing how secure carbon is in sagebrush ecosystems within the Great Basin
Using technical transfer to bridge science production and management action
Assessing conservation readiness: The where, who, and how of strategic conservation in the sagebrush biome
Where do we go from here with sagebrush conservation: A long-term perspective?
There is no hope without change: A perspective on how we conserve the sagebrush biome

Roadside Fuel Break in sagebrush

Little to No Nonnative Plant Invasions Detected with Fuel Break Implementation

View article.

Abundances of dominant invaders, cheatgrass and Russian thistle, were measured along treated and neighboring untreated edges in 40 paired plots along ∼61 km of 60-m wide fuel breaks. Fuel breaks were constructed using a variety of shrub-cutting and herbicide applications 1–4 yr before measurement. Generalized linear mixed effect models revealed that fractional cover significantly increased in treated compared with untreated areas by 0.02–0.12 for cheatgrass and 0–0.06 for Russian thistle within 9 m of treatment boundaries (on a scale of 0-1). We neither detected increased invasion in adjacent and untreated areas nor gradients of increasing invasion with proximity to treatment boundaries. Although these findings reveal invasions that were otherwise undetected across the entire 60 m width of fuel breaks, invasion levels did not surpass nominal management thresholds for fire behavior or risk of conversion to annual grasslands.

Journal article icon

Centering socioecological connections to collaboratively manage post-fire vegetation shifts

View article.

Climate change is altering fire regimes and post-fire conditions, contributing to relatively rapid transformation of landscapes across the western US. Studies are increasingly documenting post-fire vegetation transitions, particularly from forest to non-forest conditions or from sagebrush to invasive annual grasses. The prevalence of climate-driven, post-fire vegetation transitions is likely to increase in the future with major impacts on social–ecological systems. However, research and management communities have only recently focused attention on this emerging climate risk, and many knowledge gaps remain. We identify three key needs for advancing the management of post-fire vegetation transitions, including centering Indigenous communities in collaborative management of fire-prone ecosystems, developing decision-relevant science to inform pre-and post-fire management, and supporting adaptive management through improved monitoring and information-sharing across geographic and organizational boundaries. We highlight promising examples that are helping to transform the perception and management of post-fire vegetation transitions.

Journal article icon

Maximizing opportunities for co-implementing fuel break networks and restoration projects

View article.

Increasing impacts from wildfires are reshaping fire policies worldwide, with expanded investments in a wide range of fuel reduction strategies. In many fire prone regions, especially in the Mediterranean basin, fuel management programs have relied on fuel break networks for decades to facilitate fire suppression and reduce area burned and damage. By contrast, on the fire prone federal forests in the western United States, fuel management is guided primarily by landscape restoration goals, including improving fire resiliency such that wildfires can be managed for ecological benefit, and suppression is used more as a tool to shape burn patterns and less to extinguish fires. New policies in both fire systems are now calling for hybrid approaches that rely on both types of investments and efficient allocation of alternative spatial treatment patterns: linear networks versus patches across the landscape. However, studies that combine these strategies and examine alternative co-prioritization outcomes and potential synergies are largely non-existent. Here, we analyzed scenarios for implementing both types of treatments in concert while varying the prioritization metrics for one type or the other on a western United States national forest.

Journal article icon

Dynamic spatiotemporal understanding of changes in social vulnerability to wildfires at local scale

View article.

This study investigates the dynamic changes in social vulnerability to wildfires over a decade in Idaho, USA, utilizing GIS-based tools and a quasi-experimental design. We assess the evolving nature of social vulnerability at a local scale, emphasizing both spatial and temporal dynamics. Initially, we identified social vulnerability trends in relation to varying levels of wildfire risk. The research then employs propensity score matching to contrast areas affected by wildfires in 2012 with similar non-affected regions, thereby quantifying the short-term shifts in social vulnerability post-wildfires. The results indicate that regions with a high wildfire risk may display elevated vulnerability, characterized by an increase in unemployment rates and a reduction in high-income households. These findings tentatively demonstrate the compounded effect of wildfires on already vulnerable populations, highlighting the critical need for targeted interventions. Ultimately, this study underscores the importance of integrating dynamic social vulnerability assessments into wildfire management and planning, aiming to enhance community resilience and equitable resource distribution in the face of escalating wildfire threats.

Journal article icon

Rare and highly destructive wildfires drive human migration in the U.S.

View article.

The scale of wildfire impacts to the built environment is growing and will likely continue under rising average global temperatures. We investigate whether and at what destruction threshold wildfires have influenced human mobility patterns by examining the migration effects of the most destructive wildfires in the contiguous U.S. between 1999 and 2020. We find that only the most extreme wildfires (258+ structures destroyed) influenced migration patterns. In contrast, the majority of wildfires examined were less destructive and did not cause significant changes to out- or in-migration. These findings suggest that, for the past two decades, the influence of wildfire on population mobility was rare and operated primarily through destruction of the built environment.

Journal article icon

Optimizing drought assessment for soil moisture deficits

View article.

Accurate drought assessments are critical for mitigating the deleterious impacts of water scarcity on communities across the world. In many regions, deficits in soil moisture represent a key driver of drought conditions. However, relationships between soil moisture and widely used drought indicators have not been thoroughly evaluated. In addition, there has not been an in‐depth assessment of the accuracy of operational soil moisture models used for drought monitoring. Here, we used 2,405 observed time series of soil moisture from 637 long‐term monitoring stations across the conterminous United States to test the ability of meteorological drought indices and soil moisture models to accurately characterize soil moisture drought. The optimal timescales for meteorological drought indices varied substantially by depth, but were ~30 days for depth averaged conditions; progressively longer timescales (∼10-80 days) represent progressively deeper soil moisture (2-36 in.). However, soil moisture models (including Short‐term Prediction Research and Transition Center, Soil Moisture Active Passive L4, and Topofire) significantly outperformed the meteorological drought indices for predicting standardized soil moisture anomalies and drought conditions. Additionally, soil moisture models represent near instantaneous conditions, implicitly aggregating antecedent data thereby eliminating the need for timescales, providing a more effective and convenient method for soil moisture drought monitoring. We conclude that soil moisture models provide a straightforward and favorable alternative to meteorological drought indices that better characterize soil moisture drought.

Journal article icon

Nitrogen dynamics after fire: How severe fire and aridity reduce ecosystem N retention

View article.

Severe fire limited N uptake by plants. Dry conditions after fire limited both plant and microbial N uptake. Implications. When fire is severe or when soils are relatively dry after fire, recovering plants and microbes are less likely to take up post-fire N and therefore, N in these sites is more susceptible to export.

Narrow your search

Stay Connected