Article / Book

Journal article icon

Guiding principles for using satellite-derived maps in rangeland management

View article.

Here, we advance the practice of using satellite-derived maps with four guiding principles designed to increase end user confidence and thereby accessibility of these data for decision-making.

Journal article icon

Reversing tree encroachment increases usable space for sage-grouse during the breeding season

View article.

Sage-grouse increasingly selected areas closer to conifer removals and were 26% more likely to use removal areas each year after removal. Sage-grouse were most likely to select areas where conifer cover had been reduced by ≤10%. The proportion of available locations having a high relative probability of use increased from 5% to 31% between 2011 and 2017 in the treatment area and locations with the lowest relative probability of use decreased from 57% to 21% over the same period. Dynamics in relative probability of use at available locations in the control area were stochastic or stable and did not demonstrate clear temporal trends relative to the treatment area. Targeted conifer removal is an effective tool for increasing usable space for sage-grouse during the breeding season and for restoring landscapes affected by conifer expansion.

Journal article icon

Climate variability mediates changes in carbon and nitrogen pools caused by annual grass invasion

View article.

Multivariate analyses and ANOVAs showed that in invasion stages where native shrub and perennial grass and forb communities were replaced by annual grass-dominated communities, the ecosystem lost more soil N and C in wet years. Path analysis showed that high water availability led to higher herbaceous cover in all invasion stages. In stages with native shrubs and perennial grasses, higher perennial grass cover was associated with increased soil C and N, while in annual-dominated stages, higher annual grass cover was associated with losses of soil C and N. Also, soil total C and C:N ratios were more homogeneous in annual-dominated invasion stages as indicated by within-site standard deviations. Loss of native shrubs and perennial grasses and forbs coupled with annual grass invasion may lead to long-term declines in soil N and C and hamper restoration efforts. Restoration strategies that use innovative techniques and novel species to address increasing temperatures and ICV and emphasize maintaining plant community structure—shrubs, grasses, and forbs—will allow sagebrush ecosystems to maintain C sequestration, soil fertility, and soil heterogeneity.

Journal article icon

Disturbance and sustainability in forests of the western US

View technical report.

This report assesses recent forest disturbance in the Western United States and discusses implications for sustainability. Individual chapters focus on fire, drought, insects, disease, invasive plants, and socioeconomic impacts. Disturbance data came from a variety of sources, including the Forest Inventory and Analysis program, Forest Health Protection, and the National Interagency Fire Center. Disturbance trends with the potential to affect forest sustainability include alterations in fire regimes, periods of drought in some parts of the region, and increases in invasive plants, insects, and disease. Climate affects most disturbance processes, particularly drought, fire, and biotic disturbances, and climate change is expected to continue to affect disturbance processes in various ways and degrees.

Journal article icon

Adapting western North American forests to climate change and wildfires: 10 common questions

View article.

Based on our review of the scientific evidence, a range of proactive management actions are justified and necessary to keep pace with changing climatic and wildfire regimes and declining forest heterogeneity after severe wildfires. Science-based adaptation options include the use of managed wildfire, prescribed burning, and coupled mechanical thinning and prescribed burning as is consistent with land management allocations and forest conditions. Although some current models of fire management in wNA are averse to short-term risks and uncertainties, the long-term environmental, social, and cultural consequences of wildfire management primarily grounded in fire suppression are well documented, highlighting an urgency to invest in intentional forest management and restoration of active fire regimes.

 

Journal article icon

Forest resistance to extended drought enhanced by Rx fire in low-elevation Sierra Nevada

View article.

Relative to unburned sites, we found that burned sites had lower stem density and had lower proportions of recently dead trees (for stems ≤47.5 cm dbh) that presumably died during the drought. Differences in recent tree mortality among burned and unburned sites held for both fir (white fir and red fir) and pine (sugar pine and ponderosa pine) species. Unlike earlier results, models of individual tree mortality probability supported an interaction between plot burn status and tree size, suggesting the effect of prescribed fire was limited to small trees. We consider differences with other recent results and discuss potential management implications including trade-offs between large tree mortality following prescribed fire and increased drought resistance.

Sagebrush mtn. landscape

Episodic occurrence of favorable weather constrains recovery of a cold desert shrubland after fire

View article.

This study demonstrates the importance of episodic periods of favorable weather for long-term plant population recovery following disturbance. Management strategies that increase opportunities for seed availability to coincide with favorable weather conditions, such as retaining unburned patches or repeated seeding treatments, can improve restoration outcomes in high-priority areas.

Journal article icon

Effects of elevation and selective disturbance on soil climate and vegetation in big sagebrush communities

View article.

During the first years after removal of perennial grasses and forbs, there was an increase in soil water availability in spring at 13–30 cm soil depth that was associated with sagebrush establishment, particularly at upper elevations. In subsequent years, sagebrush continued to dominate even though little difference in soil water availability existed between disturbed and undisturbed plots. This indicates that quickly establishing sagebrush preempted resources and reduced perennial herb recovery. Resource preemption after disturbance will likely be a major driver of plant succession in the future as in the past. Species that establish best under future warmer and drier conditions are most likely to dominate after disturbance. A negative correlation (r2 = 0.34) between the standard deviation of annual spring soil water availability and perennial vegetation cover, which helps resist annual grass invasion, supports the hypothesis that greater resource fluctuation is associated with greater plant community invasibility. Current responses to fire and loss of native plant cover across elevational gradients can indicate future responses under a warmer and drier climate.

Journal article icon

Modelling species distributions and environmental suitability highlights risk of plant invasions in western US

View article.

Invasive forb and grass species are likely to expand their ranges and continued increases in temperature, aridity and area burned will increase invasion risk. Monitoring species presence and absence and mapping known and potential ranges with a focus on presence detection, as in our methodology, will aid in identifying new invasions and prioritizing prevention and control.

Great Basin mountain scene

Sagebrush recovery patterns after fuel treatments mediated by disturbance type and plant functional group interactions

View article.

Treatments in cooler and moister woodland sites had more positive effects on sagebrush recruitment and perennial grass cover, less negative effects on sagebrush intraspecific interactions, and smaller increases in annual grass cover indicating potential increases in resilience to fire. In warmer and drier invasion sites, reductions in woody fuels resulted in lack of sagebrush recruitment, disruption of sagebrush intraspecific interactions, and progressive increases in annual grass indicating reduced resilience to fire and resistance to invaders.

Narrow your search

Can't find what you need?

Stay Connected