Article / Book

Journal article icon

Ratcheting up resilience in the northern Great Basin

View article.

Although important to consider in land management planning, abiotic properties cannot be directly influenced with management. In contrast, biotic properties of the ecosystem can be readily influenced by management.  The formula for robust biotic resilience to wildfire and resistance to invasive annual grasses in the northern Great Basin sagebrush ecosystem is about maintaining and promoting perennial bunchgrasses. The management system must be resilient if we hope to promote ecosystem resilience in an ever-changing risk, seedling recruitment, and recovery environment. A successful strategy for promoting ecosystem resilience will require securing a resilient management system, and a shift in paradigm from random acts of opportunistic restoration to a sustained, organized, process-based approach for promoting ecosystem resilience.

Journal article icon

Grazing management to reduce wildfire risk in invasive annual grass prone sagebrush communities

View article.

Moderate grazing decreases wildfire probability by decreasing fuel amount, continuity, and height and increasing fuel moisture content. Grazing, through its modification of fuels, can improve fire suppression efforts by decreasing flame lengths, rate of fire spread, and fire severity. Logistical, social, and administrative challenges exist to using grazing to decrease fire probability. Some of these challenges can be overcome by using off-season (i.e., fall-winter) grazing, but other challenges will require persistent efforts as well as science to support management changes.

Journal article icon

Minimize the bad days: Wildland fire response and suppression success

View article.

By mobilizing a timely and safe initial response, early detection technologies, strategic networks of fuel breaks, and Rangeland Fire Protection Associations help “minimize the bad days” on the fireline and improve suppression success on a vast and remote landscape.

Journal article icon

Managing for resilient sagebrush plant communities in the modern era: We’re not in 1850 anymore

View article.

This article provides a broad overview of sagebrush plant community ecology, how that ecology has varied through time, the role of invasive annual grasses in influencing sagebrush plant community ecology, and thoughts on a productive path forward.

Journal article icon

Scientist engagement with boundary organizations and knowledge coproduction: A case study of the Southwest Fire Science Consortium

View article.

Overall, scientists more engaged with SWFSC reported involvement in a wider variety of knowledge coproduction activities. However, some knowledge coproduction activities, especially those requiring greater time investment or facing institutional barriers (e.g., research collaboration) were less common among all participants. Most scientists involved in knowledge coproduction believed that SWFSC increased their participation in these activities outside the boundary organization context, in part because SWFSC provided opportunities to interact with and understand the needs of managers/practitioners, as well as build research collaborations. Findings indicate that boundary organizations, such as SWFSC, can foster knowledge coproduction, but that they may need to further explore ways to address challenges for knowledge coproduction activities that involve greater time commitment or institutional challenges.

Journal article icon

Statistical considerations of nonrandom treatment applications reveal region-wide benefits of widespread post-fire restoration action

View article.

From following more than 1,500 wildfires, we find treatments were disproportionately applied in more stressful, degraded ecological conditions. Failure to incorporate unmeasured drivers of treatment allocation led to the conclusion that costly, widespread seedings were unsuccessful; however, after considering sources of bias, restoration positively affected sagebrush recovery. Treatment effects varied with climate, indicating prioritization criteria for interventions. Our findings revise the perspective that post-fire sagebrush seedings have been broadly unsuccessful and demonstrate how selection biases can pose substantive inferential hazards in observational studies of restoration efficacy and the development of restoration theory.

Journal article icon

Great Basin bristlecone pine mortality: Causal factors and management implications

View article.

At both sites climatic water deficit (CWD), a cumulative measure of moisture stress, and mean annual temperature increased during the 2010 decade and CWD was the highest in 2020 relative to any time during the past 40 years. Although Great Basin bristlecone pine mortality has not previously been attributed to bark beetles, we observed recent (i.e., 2013 to 2020) bark beetle-attacked trees at both sites, coincident with the timing of increasing temperature and CWD. Few adult beetles were produced, however, and our results support previous research that Great Basin bristlecone pine is a population sink for bark beetles. Because bark beetles are likely not self-sustaining in Great Basin bristlecone pine, bark beetle-caused mortality of this iconic species will most likely occur when it grows mixed with or near other pine species that support bark beetle population growth. We found Ips confusus and Dendroctonus ponderosae attacking Great Basin bristlecone pine in areas where their host trees, P. monophylla and P. flexilis, were also growing. These results suggest that the presence of these infested conifers likely contributed to Great Basin bristlecone pine mortality. We highlight several factors that may be used for prioritizing future research and monitoring to facilitate development of management strategies for protecting this iconic species.

Journal article icon

An analysis of factors influencing structure loss resulting from the 2018 Camp Fire

View article.

Results were largely consistent with previously literature, finding that structural hardness factors (e.g. double-paned windows, enclosed eaves, ignition-resistant roofs and siding, no vents, etc.) are important in determining structure survival. Newer structures, built after California’s recent (2005 and 2007) fire safe building code updates, were more likely to survive, as were homes with higher improvement values. Mobile homes were far more likely to be destroyed. The role of fuel mitigation around structures was less conclusive; defensible space clearance had only a weak association with structure survival, although DINS+DSPACE results suggested a slight reduction in risk due to removing leaves and needles from gutters/roofs and keeping surrounding dead grass mowed.

Journal article icon

Post-fire succession of seeding treatments in relation reference communities in the Great Basin

View article.

Local unburned reference communities had fewer herbaceous perennials and higher woody cover than NRCS reference communities, suggesting departure from conditions expected under minimal post-settlement disturbance. USCs became more similar to reference communities over time, though less so at a site with abundant invasive annuals. Trajectories of seeded treatments were driven by seed mix species, with native-only mixes approaching reference communities more closely than mixes with non-natives.

Journal article icon

Organizational influence on the co-production of fire science: Overcoming challenges and realizing opportunities

View article.

Research organizations like Rocky Mountain Research Station may be able to institutionalize co-production by adjusting the way they incentivize and evaluate researchers, increasing investment in science delivery and scientific personnel overall, and supplying long-term funding to support time-intensive collaborations. These sorts of structural changes could help transform the culture of fire science so that coproduction is valued alongside more conventional scientific activities and products.

Narrow your search

Stay Connected