Article / Book

Journal article icon

Exploring the use of ecosystem services conceptual models to account for the benefits of public lands

View article.

This study describes an approach for identifying and monitoring the types of resource benefits and tradeoffs considered in National Forest planning in the United States under the 2012 Planning Rule and demonstrates the use of tools for conceptualizing the production of ecosystem services and benefits from alternative land management strategies. Efforts to apply these tools through workshops and engagement exercises provide opportunities to explore and highlight measures, indicators, and data sources for characterizing benefits and tradeoffs in collaborative environments involving interdisciplinary planning teams. Conceptual modeling tools are applied to a case study examining the social and economic benefits of recreation on the Ashley National Forest.

Journal article icon

Large CA wildfires: 2020 fires in historical context

View article.

This study shows that extreme fire events such as seen in 2020 are not unknown historically, and what stands out as distinctly new is the increased number of large fires (defined here as > 10,000 ha) in the last couple years, most prominently in 2020. Nevertheless, there have been other periods with even greater numbers of large fires, e.g., 1929 had the second greatest number of large fires. In fact, the 1920’s decade stands out as one with many large fires.

Journal article icon

Planning for future fire: Accelerated fuel reduction for the western US 

View article.

We used a sample of 30 future fire seasons to understand how the plan might be impacted by wildfires and treatment. We found that once fully implemented more than 20% of simulated fires on national forests overlapped fuel treatments, and that roughly 20% of the projects were burned prior to their implementation, suggesting that any plan will undergo significant revision during implementation. Treated areas intersected by wildfire accounted for twice the exposure than non-treated areas that also burned. The study demonstrates the use of scenario planning to design a fuel treatment program that targets wildfire exposure to developed areas, and the methods pave the way for expanded use of scenario planning science to analyze and communicate large scale expansion of current forest and fuel management initiatives.

Journal article icon

Risky development: Increasing exposure to natural hazards in the US

View article.

Our results show that 57% of structures (homes, schools, hospitals, office buildings, etc.) are located in hazard hotspots, which represent only a third of CONUS area, and ∼1.5 million buildings lie in hotspots for two or more hazards. These critical levels of exposure are the legacy of decades of sustained growth and point to our inability, lack of knowledge, or unwillingness to limit development in hazardous zones. Development in these areas is still growing more rapidly than the baseline rates for the nation, portending larger future losses even if the effects of climate change are not considered.

Journal article icon

How vulnerable are states to wildfire: A livelihood assessment

View article.

We produce a framework needed to compute the livelihood vulnerability index (LVI) for the top 14 American States that are most exposed to wildfires, based on the 2019 Wildfire Risk report of the acreage size burnt in 2018 and 2019: Arizona, California, Florida, Idaho, Montana, Nevada, New Mexico, Oklahoma, Oregon, Utah, Washington, and Wyoming. The LVI is computed for each State by first considering the State’s exposure, sensitivity, and adaptive capacity to wildfire events (known as the three contributing factors). These contributing factors are determined by a set of indictor variables (vulnerability metrics) that are categorized into corresponding major component groups. The framework structure is then justified by performing a principal component analysis (PCA) to ensure that each selected indicator variable corresponds to the correct contributing factor. The LVI for each State is then calculated based on a set of algorithms relating to our framework. LVI values rank between 0 (low LVI) to 1 (high LVI). Our results indicate that Arizona and New Mexico experience the greatest livelihood vulnerability, with an LVI of 0.57 and 0.55, respectively. In contrast, California, Florida, and Texas experience the least livelihood vulnerability to wildfires (0.44, 0.35, 0.33 respectively). LVI is strongly weighted on its contributing factors and is exemplified by the fact that even though California has one of the highest exposures and sensitivity to wildfires, it has very high adaptive capacity measures in place to withstand its livelihood vulnerability. Thus, States with relatively high wildfire exposure can exhibit relatively lower livelihood vulnerability because of adaptive capacity measures in place.

Journal article icon

Land surface phenology reveals differences in peak and season-long vegetation productivity responses to climate and management

View article.

We first analyzed interannual trends in six phenological measures as a baseline. We then demonstrated how including annual-resolution predictors can provide more nuanced insights into measures of phenology between plant communities and across the ecoregion. Across the study area, higher annual precipitation increased both peak and season-long productivity. In contrast, higher mean annual temperatures tended to increase peak productivity but for the majority of the study area decreased season-long productivity. Annual precipitation and temperature had strong explanatory power for productivity-related phenology measures but predicted date-based measures poorly. We found that relationships between climate and phenology varied across the region and among plant communities and that factors such as recovery from disturbance and anthropogenic management also contributed in certain regions. In sum, phenological measures did not respond ubiquitously nor covary in their responses. Nonclimatic dynamics can decouple phenology from climate; therefore, analyses including only interannual trends should not assume climate alone drives patterns.

Journal article icon

Drivers of seedling establishment success in dryland restoration

View article.

Here we examine restoration seeding outcomes across 174 sites on six continents, encompassing 594,065 observations of 671 plant species. Our findings suggest reasons for optimism. Seeding had a positive impact on species presence: in almost a third of all treatments, 100% of species seeded were growing at first monitoring. However, dryland restoration is risky: 17% of projects failed, with no establishment of any seeded species, and consistent declines were found in seeded species as projects matured. Across projects, higher seeding rates and larger seed sizes resulted in a greater probability of recruitment, with further influences on species success including site aridity, taxonomic identity and species life form. Our findings suggest that investigations examining these predictive factors will yield more effective and informed restoration decision-making.

Journal article icon

Wildfire smoke may have contributed to thousands more COVID-19 cases and deaths

View article.

Thousands of COVID-19 cases and deaths in California, Oregon, and Washington between March and December 2020 may be attributable to increases in fine particulate air pollution (PM2.5) from wildfire smoke, according to a new study co-authored by researchers at Harvard T.H. Chan School of Public Health.

Journal article icon

76-year decline and recovery of aspen mediated by contrasting fire regimes

View article.

Our study area in northeastern California on the Lassen, Modoc and Plumas National Forests has experienced recent large mixed-severity wildfires where aspen was present, providing an opportunity to study the re-introduction of fire. We observed two time periods; a 52-year absence of fire from 1941 to 1993 preceding a 24-year period of wildfire activity from 1993 to 2017. We utilized aerial photos and satellite imagery to delineate aspen stands and assess conifer cover percent. We chose aspen stands in areas where wildfires overlapped (twice-burned), where only a single wildfire burned, and areas that did not burn within the recent 24-year period. We observed these same stands within the first period of fire exclusion for comparison (i.e., 1941–1993). In the absence of fire, all aspen stand areas declined and all stands experienced increases in conifer composition. After wildfire, stands that burned experienced a release from conifer competition and increased in stand area. Stands that burned twice or at high severity experienced a larger removal of conifer competition than stands that burned once at low severity, promoting expansion of aspen stand area. Stands with less edge:area ratio also expanded in area more with fire present. Across both time periods, stand movement, where aspen stand footprints were mostly in new areas compared to footprints of previous years, was highest in smaller stands. In the fire exclusion period, smaller stands exhibited greater loss of area and changes in location (movement) than in the return of fire period, highlighting their vulnerability to loss via succession to conifers in the absence of disturbances that provide adequate growing space for aspen over time.

Journal article icon

Warming enabled upslope advance in western US forest fires

View article.

Here, we focus on the elevational distribution of forest fires in mountainous ecoregions of the western United States and show the largest increase rates in burned area above 2,500 m during 1984 to 2017. Furthermore, we how that high-elevation fires advanced upslope with a median cumulative change of 252 m (−107 to 656 m; 95% CI) in 34 y across studied ecoregions. We also document a strong interannual relationship between high-elevation fires and warm season vapor pressure deficit (VPD). The upslope advance of fires is consistent with observed warming reflected by a median upslope drift of VPD isolines of 295 m (59 to 704 m; 95% CI) during 1984 to 2017. These findings allow us to estimate that recent climate trends reduced the high-elevation flammability barrier and enabled fires in an additional 11% of western forests. Limited influences of fire management practices and longer fire-return intervals in these montane mesic systems suggest these changes are largely a byproduct of climate warming. Further weakening in the high-elevation flammability barrier with continued warming has the potential to transform montane fire regimes with numerous implications for ecosystems and watersheds.

Narrow your search

Stay Connected