Article / Book

Journal article icon

Patterns of wildfire risk in the US as characterized by land managers

View article.

In this study, patterns of wildfire risk were explored from operational relative risk assessments (RRA) completed by land managers on 5087 wildfires from 2010 to 2017 in every geographic area of the USA. The RRA is the formal risk assessment used by land managers to develop strategies on emerging wildfires when concerns and issues related to wildfire management are in real-time. Only 38% of these wildfires were rated as high risk and 28% had high ratings for values at risk. Large regional variations were evident, with the West Coast regions selecting high risk and the South-west and Eastern regions selecting low risk. There were finer-scale influences on perceived risk when summarized on a jurisdictional level. Finally, risk summarized by USA agencies showed that the National Park Service and USDA Forest Service selected high risk less frequently compared with other agencies. By illuminating patterns of risk, this research intends to stimulate examination of the social, cultural, and physiographic factors influencing conceptions of risk.

Journal article icon

Resilience to fire and resistance to annual grass invasion in sagebrush ecosystems of US National Parks

Approximately 70 park units include at least some sagebrush shrublands or steppe, but we identified 40 parks with substantial amounts (>20% of park area) that can be included in an agency-wide conservation strategy. Second, we examined detailed patterns of resilience and resistance, fire history and fire risk, cheatgrass (Bromus tectorum) invasion, and sagebrush shrub (Artemisia spp.) persistence in five national park units in Columbia Basin and Snake River Plain sagebrush steppe, contextualized by the broader summary. In these five parks, fire frequency and size increased in recent decades. Cheatgrass invasion and sagebrush persistence correlated strongly with resilience, burn frequency (0–3 fires since ~1940), and burn probability, but with important variation, in part mediated by local-scale topography. Third, we used these insights to assemble strategic sagebrush ecosystem fire protection mapping scenarios in two additional parks – Lava Beds National Monument and Great Basin National Park. Readily available and periodically updated geospatial data including soil surveys, fire histories, vegetation inventories, and long-term monitoring support resiliency-based adaptive management through tactical planning of pre-fire protection, post-fire restoration, and triage. Our assessment establishes the precarious importance of the US national park system to sagebrush ecosystem conservation and an operational strategy for place-based and science-supported conservation.

Journal article icon

Understanding the future of big sagebrush regeneration: Challenges of projecting complex ecological processes

View article.

Here, we used two complementary models to explore spatial and temporal relationships in the potential of big sagebrush regeneration representing (1) range-wide big sagebrush regeneration responses in natural vegetation (process-based model) and (2) big sagebrush restoration seeding outcomes following fire in the Great Basin and the Snake River Plains (regression-based model). The process-based model suggested substantial geographic variation in long-term regeneration trajectories with central and northern areas of the big sagebrush region remaining climatically suitable, whereas marginal and southern areas are becoming less suitable. The regression-based model suggested, however, that restoration seeding may become increasingly more difficult, illustrating the particularly difficult challenge of promoting sagebrush establishment after wildfire in invaded landscapes. These results suggest that sustaining big sagebrush on the landscape throughout the 21st century may climatically be feasible for many areas and that uncertainty about the long-term sustainability of big sagebrush may be driven more by dynamics of biological invasions and wildfire than by uncertainty in climate change projections. Divergent projections of the two models under 21st century climate conditions encourage further study to evaluate potential benefits of re-creating conditions of uninvaded, unburned natural big sagebrush vegetation for post-fire restoration seeding, such as seeding in multiple years and, for at least much of the northern Great Basin and Snake River Plains, the control of the fire-invasive annual grass cycle.

Journal article icon

Seedlings display high trait variability during early stages of development

View article.

Using a manipulative greenhouse experiment, we investigated trait variation during early stages of seedling development in seven dominant perennial plant species in the western United States. We examined variability in key trait values (i.e. SLA, root:shoot ratio (RSR), specific root length (SRL) and root dry matter content (RDMC)) of 20- to 62-day-old seedlings grown under low and high levels of water availability. We also compared these to compiled trait databases to assess how representative these readily available data sources are of seedling trait values.

Journal article icon

Prioritizing restoration areas to conserve multiple sagebrush-associated wildlife species

View article.

We identified restoration priority areas with greater precision than existing spatial prioritizations and incorporated range differences among species. We noted tradeoffs, including that restoring for habitat connectivity may require restoration actions in areas with lower probability of success. Future applications of Prioritizing Restoration of Sagebrush Ecosystems Tool will draw from emerging datasets, including spatially-varying economic costs of restoration, animal movement data, and additional species, to further improve our ability to target effective sagebrush restoration.

Journal article icon

Sage-grouse population dynamics are adversely affected by overabundant feral horses

View article.

On average, for every 50% increase in horse abundance over maximum appropriate management levels, our model predicted an annual decline in sage-grouse abundance by 2.6%. Horse abundance at or below maximum appropriate management levels coincided with sage-grouse λ estimates that were consistent with trends at non-horse areas elsewhere in the study region.

Journal article icon

Dynamics of insect pollinator communities in sagebrush associated with weather and vegetation

View article.

Pollinator familial richness, diversity, abundance, and timing of emergence were most strongly positively associated with spatiotemporal variation in minimum daily temperatures at the ground surface during the active season. Emergence timing was positively correlated with growing degree days and percent humidity, regardless of elevation. All pollinator groups varied in abundance throughout their active season, peaking in early July (bees), late July (flies), or early August (butterflies and moths). Our findings suggest that changes in nighttime temperatures, which have been steadily increasing over the last several decades as a result of climate change, may have strong effects on sagebrush steppe pollinator communities. Also, non-bee pollinators may provide particularly important pollination in this vast ecosystem during the warmest time of the year.

Journal article icon

Wildfire and climate change adaptation of western US forests: A case for intentional management

View article.

Hagmann et al. (in press) review a century of observations and multi-scale, multi-proxy research evidence that details widespread changes in forested landscapes and wildfire regimes since the influx of European colonists. Over the preceding 10 millennia, large areas of wNA were already settled and proactively managed with intentional burning by Indigenous tribes. Prichard et al. (in press) then review the research on management practices historically applied by Indigenous tribes and currently applied by some managers to intentionally manage forests for resilient conditions. They address ten questions surrounding the application and relevance of these management practices. Here, we highlight the main findings of both papers and offer recommendations for management. We discuss progress paralysis that often occurs with strict adherence to the precautionary principle; offer insights for dealing with the common problem of irreducible uncertainty and suggestions for reframing management and policy direction; and identify key knowledge gaps and research needs.

Journal article icon

Beyond planning tools: Experiential learning in climate adaptation planning and practices

View article.

Here, we describe a training approach that we developed to help managers effectively plan to execute intentional, climate-informed actions. This training approach was developed through the Climate Change Response Framework (CCRF) and uses active and focused work time and peer-to-peer interaction to overcome observed barriers to using adaptation planning tools. We evaluate the effectiveness of this approach by examining participant evaluations and outlining the progress of natural resources projects that have participated in our trainings. We outline a case study that describes how this training approach can lead to place and context-based climate-informed action. Finally, we describe best practices based on our experience for engaging natural resources professionals and helping them increase their comfort with climate-informed planning.

Journal article icon

Fireshed Registry: Fireshed and project area boundaries for the continental US

View article.

The Fireshed Registry is a geospatial dashboard and decision tool built to organize information about wildfire transmission to communities and monitor progress towards risk reduction for communities from management investments. The concept behind the Fireshed Registry is to identify and map the source of risk rather than what is at risk across all lands in the continental United States. While the Fireshed Registry was organized around mapping the source of fire risk to communities, the framework does not preclude the assessment of other resource management priorities and trends such as water, fish and aquatic or wildlife habitat, or recreation. The Fireshed Registry is also a multi-scale decision tool for quantifying, prioritizing, and geospatially displaying wildfire transmission to buildings in adjacent or nearby communities.

Narrow your search

Stay Connected