Article / Book

Open book with lines simulating text on left and right pages

Updating LANDFIRE fuel data assists local planning efforts

View article.

The LANDFIRE program provides a data safety net by producing biannually updated fuels products for all-lands in the United States. But even these data are two to three years old when they are delivered, and while they provide a good starting point, they are designed for national and regional level application. Local review and calibration is recommended to ensure that the data are suitable for smaller landscapes. An example from Idaho illustrates how adjusting LANDFIRE fuel data can ensure that current, accurate fuel information is ready to support fire and land management activities.

Open book with lines simulating text on left and right pages

Towards improving wildland firefighter situational awareness through daily fire behaviour risk assessments in the US Northern Rockies and Northern Great Basin

View article.

This paper presents a simple framework for relating fire danger indices to observed categorical wildland fire behaviour. Ordinal logistic regressions are used to model the probabilities of five distinct fire behaviour categories that are then combined with a safety-based weight function to calculate a Fire Behaviour Risk rating that can plotted over time and spatially mapped. Development and use across three adjacent US National Forests is demonstrated, and predicted fire behaviour risk ratings are compared with observed variations in satellite-measured fire radiative power. This approach transforms fire weather conditions into simple and actionable fire behaviour risk metrics that wildland firefighters can use to support decisions that meet required objectives and keep people safe.

Open book with lines simulating text on left and right pages

Managing climate change risks in rangeland systems

View chapter.

A risk framework for adaptation could integrate key vulnerabilities, risk, and hazards, and facilitate development of adaptation actions that address the entire socio-ecological system. Adaptation plans will need to be developed and implemented with recognition of future uncertainty that necessitates an iterative implementation process as new experience and information accumulate. Developing the skills to manage with uncertainty may be a singularly important strategy that landowners, managers, and scientists require to develop adaptive capacity.

Open book with lines simulating text on left and right pages

Population genetic structure of Bromus tectorum in the mountains of western North America

View article.

The wide geographic distribution of several common haplotypes almost completely restricted to montane habitats suggests that dominant lineages in montane populations may possess adaptive syndromes that are preserved through reduced outcrossing rates or negative selection on outcrossed progeny. However, conclusive evidence of such local adaptation requires reciprocal seeding experiments and further characterization of adaptive traits and breeding system characteristics. Other lineages have likely risen to dominance in montane populations through selectively neutral processes.

Open book with lines simulating text on left and right pages

Post-fire vegetation response at the woodland-shrubland interface is mediated by the pre-fire community

View article.

Among sites with low-to-moderate tree cover, burning largely eliminated differences in understory composition, suggesting that biotic legacies were sufficient to result in predictable trajectories. In contrast, sites with high pre-fire tree cover transitioned into an annual forb-dominated community with sparse vegetation cover, suggesting that the loss of the understory community initiated unpredictable and divergent post-fire trajectories. Because plant communities were still changing four years after fire, it is unclear whether the alternate trajectories in sites with high tree cover will result in the formation of alternate states, or whether community composition will eventually converge with other sites at the same elevation. Results indicate that careful evaluation of site characteristics can be used to predict treatment outcomes at the woodland-shrubland interface, and to guide the appropriate use of prescribed fire or other management practices.

Open book with lines simulating text on left and right pages

Removal of perennial herbaceous species affects response of cold desert scrublands to fire

View article.

Results show that loss of perennial herbaceous species, which can result from inappropriate livestock grazing, and loss of shrubs, which often results from fire, interact to affect key functional groups. The implications are that ecosystem resilience to disturbance in Cold Desert shrublands decreases when competition from perennial native grasses and forbs for available resources no longer prevents dominance by A. tridentata and other shrubs and/ or annual invasive grasses. Managing livestock grazing to maintain or increase perennial herbaceous species, especially deep-rooted grasses, which contribute to resilience along elevation gradients, can help prevent threshold crossings to undesirable states and retain critical ecosystem services following disturbances such as wildfire.

Open book with lines simulating text on left and right pages

Influence of climate and environment on post-fire recovery of mountain big sagebrush

View article.

This study investigated the relative importance of site productivity and seasonal climate in explaining the variance in recovery time for 36 fires, comprising a fire chrono-sequence (from 1971 to 2007) for the Great Basin and Colorado Plateau. A. t. vaseyana recovery was positively related to precipitation in the cool season immediately following fire, likely because deep soil-water recharge that persists throughout the growing season enhances first-year seedling survival. Percentage sand fraction positively correlated with recovery rate yet negatively correlated with live cover in unburnt stands. Our data support the hypothesis that post-fire recovery rate of A. t. vaseyana depends on the climatically controlled ephemerality of the regeneration niche, as is likely true for many arid-land shrub species.

Open book with lines simulating text on left and right pages

Computational study of the interactions of three adjacent burning shrubs subjected to wind

View article.

The burnout time for upstream shrubs increased with an increase in shrub separation distance for all shrub sizes and wind speeds considered. The burnout time for the downstream shrub was found to decrease with an increase in the separation distance, reach a minimum, and then increase with an increase in separation distance. The trends observed in burnout times for downstream shrub were attributed to the balance between heat feedback into the downstream shrub from the flames in upstream shrubs and availability of sufficient oxygen for combustion to take place.

Open book with lines simulating text on left and right pages

Defining wildland firefighter safety and survival zone separation distances

View article.

The significant variables for the fatal injury model were fire shelter use, slope steepness and flame height. The separation distances needed to ensure no more than a 1 or 5% probability of fatal injury, without the use of a fire shelter, for slopes less than 25% were 20 to 50 m for flame heights less than 10 m, and 1 to 4 times the flame height for flames taller than 10 m. The non-fatal injury model significant variables were fire shelter use, vehicle use and fuel type. At the 1 and 5% probability thresholds for a non-fatal injury, without the use of a fire shelter, the separation distances were 1 to 2, 6 to 7, and 12 to 16 times greater than the current safety zone guideline (i.e. 4 times the flame height) for timber, brush and grass fuel types respectively.

Open book with lines simulating text on left and right pages

Critique of the historical-fire-regime concept in conservation

View article.

In North America, decisions about how and when to apply prescribed fire are typically based on the historical-fire-regime concept (HFRC), which holds that replicating the pattern of fires ignited by lightning or preindustrial humans best promotes native species in fire-prone regions. This study found that the practice of inferring historical fire regimes for entire regions or ecosystems often entails substantial uncertainty and can yield equivocal results; ecological outcomes of fire suppression are complex and may not equate to degradation, depending on the ecosystem and context; and habitat fragmentation, invasive species, and other modern factors can interact with fire to produce novel and in some cases negative ecological outcomes. Although the HFRC is a valuable starting point, it should not be viewed as the sole basis for developing prescribed fire programs. Rather, fire prescriptions should also account for other specific, measurable ecological parameters on a case-by-case basis.

Narrow your search

Stay Connected