Article / Book
View article.
In this study, researchers concluded that variability in tree regeneration after disturbance can dampen and delay future disturbance by breaking spatiotemporal synchrony on the landscape. This highlights the importance of fostering landscape variability in the context of ecosystem management given changing disturbance regimes.
View report.
This report makes the case that forest restoration should be at least equal to other land management priorities because large-scale restoration is necessary for the sake of forest ecosystem integrity now and into the future. Another proposal is to switch the “default” rule in federal planning documents that currently have to “justify” managed wildland fire; instead, U.S. federal agencies should be required to disclose the long-term ecological impacts of continued fire suppression.
View article.
In this study, field sampling and analysis were conducted across environmental gradients following the 2007 Tongue-Crutcher Wildfire in southwestern Idaho to determine the conditions most influential in post-fire vegetation recovery patterns. Duff depth and fire severity were determined to be the most influential factors affecting post-fire vegetation response.
View article.
This study found that higher moss cover will be achieved quickly with the addition of organic matter and when moss fragments originate from sites with a climate that is similar to that of the restoration site.
View article.
Collectively, the data analyzed in this study demonstrate that good condition ungrazed Wyoming big sagebrush plant communities exhibited resilience following fire and maintained a native-dominated mosaic of shrubs, bunchgrasses, and forbs. Further, unburned control plots were dominated by woody vegetation and exhibited losses in herbaceous understory, possibly indicating that they are outside of their natural fire return interval.
View article.
This study provides quantitative evidence linking long-term declines of sage-grouse to chronic effects of wildfire. Projected declines may be slowed or halted by targeting fire suppression in remaining areas of intact sagebrush with high densities of breeding sage-grouse.
Read article.
This article reviews trends in aspen science and management, particularly in Utah and highlights recent studies continuing the tradition to keep rangeland managers informed of important developments, focusing on aspen functional types, historical cover change and climate warming, ungulate herbivory, and disturbance interactions.
View article.
Findings of this study supports other studies reporting negative impacts of oil and gas development on sage-grouse populations and our modeling approach allowed us to make inference to a longer time scale and larger spatial extent than in previous studies. In addition to sage-grouse, development may also negatively affect other sagebrush-obligate species, and active management of sagebrush habitats may be necessary to maintain some species.
View article.
This study found two levels of hierarchical genetic subpopulation structure. These subpopulations occupy significantly different elevations and are surrounded by divergent vegetative communities with different dominant subspecies of sagebrush, each with its own chemical defense against herbivory. We propose five management groups reflective of genetic subpopulation structure. These genetic groups are largely synonymous with existing priority areas for conservation. On average, 85.8 % of individuals within each conservation priority area assign to a distinct subpopulation. Our results largely support existing management decisions regarding subpopulation boundaries.
View article.
This paper reports that community results from burn treatments can mean an increase in patchy spatial distribution of ectomycorrhiza (EMF). Quick initiation of EMF recolonization is possible depending on the size of high intensity burn patches, proximity of low and unburned soil, and survival of nearby hosts. The importance of incorporating mixed fire effects in fuel management practices will help to provide EMF refugia for ponderosa pine forest regeneration.