Fact Sheet / Brief

Factsheet/brief icon

Decision tools for assessing watershed sensitivity and ecological resilience in the Great Basin

View factsheet.

Assessing the geomorphic sensitivity of streams and the ecological resilience of riparian ecosystems provides the basis for understanding how they have responded to disturbances and management actions and how they are expected to respond in the future.

A collaborative group of managers and scientists led by Jeanne Chambers, research ecologist and senior scientist (emeritus) with the USDA Forest Service Rocky Mountain Research Station, and geomorphologist Jerry Miller, a professor of environmental science at Western Carolina University, developed a multiscale approach to help land managers rapidly assess watersheds and categorize them based on resilience and sensitivity to disturbance. The project was built on the long-term work of Chambers and her collaborators on Great Basin riparian ecosystems.

Factsheet/brief icon

2020 fire season: An eye opener but not a fluke

View factsheet.

2020 was a record year for wildfires in recent history, though the area burned was close to estimates of pre-suppression burning. We should expect more of these types of fire seasons in the future. Much of the burning was destructive rather than restorative and impacts to humans were severe.

Factsheet/brief icon

Winter burning opportunities in the Sierra Nevada

View fact sheet.

With narrowing and potentially non-existent opportunities during other times of year, winter may currently be the most realistic and advantageous time to conduct prescribed burns. This study evaluated the effectiveness and feasibility of winter burning to demonstrate its potential utility in mixed conifer forests.

Factsheet/brief icon

Oregon wildfire smoke communications and impacts: An evaluation of the 2020 wildfire season

View fact sheet.

Oregon Health Authority and the University of Oregon partnered to conduct a survey-based evaluation of wildfire smoke communications and impacts experienced by Oregon residents during the 2020 wildfire season. The purpose of this survey was to (1) understand how Oregonians respond to wildfire smoke and (2) provide an open-source evaluation tool and data to support wildfire smoke communication practitioners in Oregon.

Factsheet/brief icon

LANDFIRE data and applications

View fact sheet.

Wildfire risk, species conservation, and ecosystem management all depend on seamless spatial data. LANDFIRE may already be supporting your mission if you have ever asked questions like these:

  1. What is the wildfire risk within a particular landscape?
  2. Where can I get data to evaluate fauna habitats?
  3. If ignited, how might a wildfire move through a particular landscape?
  4. How does the vegetation cover in one area compare with the vegetation in another area?
  5. How have disturbances in the past affected current forest conditions?
  6. What is the spatial distribution of a certain vegetation type?
  7. Where can I find spatial vegetation and structure data for all lands, regardless of ownership?

National LANDFIRE datasets can help answer all these questions for areas of interest within the United States and insular areas at the 30-meter pixel level. LANDFIRE is a Federal program that provides a suite of spatial datasets indicating areas of disturbance, vegetation and fuels distributions and structure, and historical conditions. Although LANDFIRE is the definitive dataset used by the interagency fire community for surface and canopy fuels, the program also maps more than 30 spatial datasets that can be used for a variety of purposes.

Factsheet/brief icon

Why fires are climbing higher than ever before due to increased western aridity

View brief.

Climate-driven changes in global temperatures and aridity are directly correlated with the decreasing interval between high-elevation fires. Fire activity is increasingly disproportionate at higher elevations than that of lower elevation forests in the Western United States. Studies documented an upslope advance of high-elevation fires of roughly 7.6 m (25 ft) per year. An additional 81,500 km2 (31,500 miles2) of the western United States forested regions were exposed to fires due to increased aridity between 1984 and 2017.

Factsheet/brief icon

Policy reforms for Rx fire liability relief and catastrophe funds

View brief.

This paper argues that the expansion of prescribed fire will require new public policies that both protect burn practitioners from liability and compensate for losses from potential fire escapes.

Factsheet/brief icon

Assessing how fuel treatments are considered during incident response

View article.

Study findings revealed that consistent treatment maintenance, the culture of communication about treatments, local expert knowledge, and unit/team composition are important components of how fuel treatments are evaluated and integrated during incident response.

Factsheet/brief icon

A-to-Z guide to biochar production, use, and benefits

View brief.

This “A-Z guide” highlights recent Rocky Mountain Research Station (RMRS) science and covers methods to make biochar on site, including using piles, kilns, and air curtain burners. It also details three uses for biochar  (agricultural, forest restoration, and mine land reclamation), and methods for application, including biochar spreaders.

Factsheet/brief icon

Policy reforms for Rx fire liability relief and catastrophe funds

View brief.

This paper argues that the expansion of prescribed fire will require new public policies that both protect burn practitioners from liability and compensate for losses from potential fire escapes.

Narrow your search

Stay Connected