Search Results:
View brief.
This brief highlights that recent fire patterns in the West confirm that warming is already causing changes in forested landscapes that are likely irreversible. Overall, the suite of JFSP studies on climate change and tipping points presents a number of strategies for adaptation to and mitigation of the effects of climate change, but the research also underscores that there is no one-size-fits all approach.
View article.
This study analyzed trends in surface air temperature and temperature extremes in the Great Basin during 1901–2010. Researchers found that annual average daily minimum temperature increased significantly during the study period, with daily maximum temperature increasing only slightly. The results of this study suggest that continuation of the overall warming trend would lead to markedly warmer conditions in upcoming decades.
View article.
This study investigated factors controlling cheatgrass invasions in sagebrush systems, including the influence of livestock grazing. It found that cheatgrass invasion was limited where few and small gaps existed between bunchgrass and where biological soil crusts were present to stabilize soil and limit cheatgrass establishment. Results also suggest that grazing reduces invasion resistance by decreasing bunchgrass abundance and trampling biological soil crusts. Managing grazing to ensure abundance and variety of bunchgrasses and to preserve biological soil crusts could help restore sagebrush ecosystems.
View strategy.
This Research Strategy provides an outline of important research topics to ensure that science information gaps are identified and documented in a comprehensive manner. Further, by identifying priority topics and critical information needed for planning, research, and resource management, it provides a structure to help coordinate members of an expansive research and management community in their efforts to conduct priority research.
View report.
This special report from the Ecological Restoration Institute at Northern Arizona University was presented to the U.S. Department of Interior, Office of Wildland Fire. The goal of this synthesis was to find, analyze and synthesize the best available evidence that policy makers need to make decisions about how to spend the limited money available to address the nation’s growing fire problem.
View report.
In this literature synthesis and meta-analysis, researchers found that the overall mean effect of fuel treatments on fire responses is large and significant, equating to a reduction in canopy volume scorch from 100% in an untreated stand to 40% in a treated stand, a reduction in scorch height from 30.5 m to 16.1 m, or an inferred reduction in flame length from 3.4 m to 2.1 m. But our synthesis demonstrates that fuel treatments vary widely in effectiveness, which is largely explained by vegetation and treatment type.
View brief.
This brief evaluates the potential effects of Diorhabda herbivory on tamarisk fire behavior at Great Basin and a Mojave Desert sites.
View brief.
This research brief reports that the cessation of fire use by Indians and a shift to climatic conditions less favorable to fire are both explanations for decreased fire frequency over the past century and a half in the southern Great Basin and Mojave desert ecotone.
View report.
In a study of arid areas of western North America, soil inclusions called slickspots, which are saltier than adjacent soil and support different types of native vegetation, USGS scientists monitored slickspot size and cover of endangered slickspot peppergrass for two years to see if they were affected by the application of glyphosate or by a minimum-till drill in the Snake River Plain, ID. The researchers concluded that slickspot sizes were not affected by these treatments.
View report.
The key findings of this synthesis are organized along nine topical areas: types of crown fires; crown fire initiation; crown fire propagation; crown fire rate of spread; crown fire intensity and flame zone characteristics; crown fire area and perimeter growth; crown fire spotting activity; models, systems, and other decision aids for predicting crown fire behavior; and implications for fire and fuel management.