Search Results:

Open book with a bar chart on left page and line graph and lines simulating text on the right page

The National Strategy: The final phase of the development of the National Cohesive Wildland Fire Management Strategy

View report.

This is the final national report of the three-phased National Cohesive Wildland Fire Management Strategy development. The National Strategy includes a set of guidelines intended to provide basic direction when planning activities. Broadly defined to address national challenges, these guidelines can be tailored to meet local and regional needs

Land Treatment Exploration Tool & LANDFIRE’s role

Webinar recording.

Listen in to this LANDFIRE Office Hour as Forest Rangeland Ecosystem Sciences Center & USGS Biologist, Michelle Jeffries details the geoprocessing and hosting requirements for running the Land Treatment Exploration Tool. She explores the ins and outs of the tool and highlights LANDFIRE’s role in informing parts of their analysis. Additionally, she suggests how minor adjustments in LANDFIRE’s versioning and indexing could improve the efficiency of operating this ecological tool.

Journal article icon

Human land uses reduce climate connectivity across North America

View article.

Climate connectivity, the ability of a landscape to promote or hinder the movement of organisms in response to a changing climate, is contingent on multiple factors including the distance organisms need to move to track suitable climate over time (i.e. climate velocity) and the resistance they experience along such routes. An additional consideration which has received less attention is that human land uses increase resistance to movement or alter movement routes and thus influence climate connectivity. Here we evaluate the influence of human land uses on climate connectivity across North America by comparing two climate connectivity scenarios, one considering climate change in isolation and the other considering climate change and human land uses. In doing so, we introduce a novel metric of climate connectivity, ‘human exposure’, that quantifies the cumulative exposure to human activities that organisms may encounter as they shift their ranges in response to climate change. We also delineate potential movement routes and evaluate whether the protected area network supports movement corridors better than non-protected lands. We found that when incorporating human land uses, climate connectivity decreased; climate velocity increased on average by 0.3 km/year and cumulative climatic resistance increased for ~83% of the continent. Moreover, ~96% of movement routes in North America must contend with human land uses to some degree. In the scenario that evaluated climate change in isolation, we found that protected areas do not support climate corridors at a higher rate than non-protected lands across North America. However, variability is evident, as many ecoregions contain protected areas that exhibit both more and less representation of climate corridors compared to non-protected lands. Overall, our study indicates that previous evaluations of climate connectivity underestimate climate change exposure because they do not account for human impacts.

Journal article icon

Risky development: Increasing exposure to natural hazards in the US

View article.

Our results show that 57% of structures (homes, schools, hospitals, office buildings, etc.) are located in hazard hotspots, which represent only a third of CONUS area, and ∼1.5 million buildings lie in hotspots for two or more hazards. These critical levels of exposure are the legacy of decades of sustained growth and point to our inability, lack of knowledge, or unwillingness to limit development in hazardous zones. Development in these areas is still growing more rapidly than the baseline rates for the nation, portending larger future losses even if the effects of climate change are not considered.

Journal article icon

Regional context for balancing sagebrush- and woodland-dependent songbird needs with targeted pinyon-juniper management

View article.

Our findings demonstrate that targeted sage grouse habitat restoration under SGI was not at odds with protection of pinyon jay populations. Rather, conifer management has largely occurred among northern sagebrush landscapes where models suggest that past cuts likely benefit Brewer’s sparrow and sage thrasher while avoiding pinyon jay habitats.

 

Webinar, video, audio icon

Leading towards a more inclusive Wildland Fire Community

Webinar recording.

As our societies grow and change, the wildland fire community has to continue to evolve in its workforce and practices to better meet the expectations place upon it. Although the thought of and having diversity, equity, and inclusion conversations can be challenging, they represent opportunities for each of us to engage and lead from where we are. This session will focus on learning through sharing stories and experiences to provoke introspection problem solving.

Journal article icon

Climate and disturbance influence self‐sustaining stand dynamics of aspen near its range margin

View paper.

This study sampled tree age and stand characteristics of isolated aspen forests in the arid Great Basin (USA) to determine if: (1) aspen communities are more fire‐dependent and seral or fire‐independent and stable; (2) ungulate browsing inhibits aspen stability; and (3) temporal patterns of vegetative reproduction (i.e., ramet establishment or “suckering”) are correlated with climate. Aspen size and age class densities strongly fit negative exponential distributions, whether grouped geographically or by functional type, suggesting landscape‐scale persistence. Continuous age distributions and high proportions of recruitment‐sized to overstory trees suggest stability at stand‐scales, with exceptions including stands with higher browsing pressure. Few stands had evidence of fire, and relationships between dead tree size and variability in live tree size suggest a lack of fire‐dependency. Several five‐year averaged climate variables and one sea surface temperature index were correlated with aspen ramet establishment densities over time, with strongest relationships occurring ~5 years prior to establishment year, often followed by inverse relationships ~1 year after. Indeed, aspen establishment density for a recent 41‐year period was reliably reconstructed using antecedent climate conditions derived from a single drought index. Temporally synchronized aspen ramet establishment across the study region may be due to climate‐driven storage of nonstructural carbohydrate reserves in clonal root systems later used for regeneration. Complex regeneration dynamics of these self‐sustaining aspen stands, especially sensitivity to climate variability, suggest they may serve as harbingers of ecological change in the arid Great Basin and in other aspen populations near their range margin.

Journal article icon

Restoration and adaptation of fire-prone forest landscapes provide ecological, cultural, and social benefits: Facts, myths, and fallacies

View article.

Drawing on recent syntheses of the scientific evidence, this paper examines “myths” commonly used to
oppose climate- and wildfire-adaptation of fire-prone forests. We use an established framework
designed to counter science denial by recognizing the fallacy for each myth. Fallacies are false
arguments; there are several kinds of fallacies, including cherry picking (selecting only a portion of
facts to support a conclusion), false dichotomies or oversimplification (claiming only two possible
outcomes), circular arguments, or straw man (misdirection) arguments. Learning to recognize
logical fallacies and other characteristics of science denial is an essential component of any
assessment of arguments for and against proposed actions

Journal article icon

Synthesizing and analyzing long-term monitoring data: A greater sage-grouse case study

View article.

Highlights:

  • Automated and repeatable method to improve scientific integrity of long-term data
  • Analyzed long-term data to improve monitoring policies and efforts
  • Increased collaborations between federal and state agencies to improve data quality
  • Recommendations for managing existing and new long-term monitoring data
  • Spatiotemporal heatmap video of Greater sage-grouse counts across North American
Journal article icon

Short-term effects of post-fire salvage logging intensity and activity on breeding birds in the Sierra Nevada Mtns

View article.

No combinations of salvage intensity and distribution from among the scenarios we explored were able to fully mitigate the negative effect on the bird community; however, the magnitude of declines in abundance and diversity was smaller than expected, and the majority of the species analyzed had a non-significant response. We recommend targeting salvage activities in the Sierra Nevada to those locations where snags pose a safety issue or where reforestation is most needed to conserve this fire-adapted bird community.

Narrow your search

Stay Connected