Search Results:

Webinar, video, audio icon

State of the science: Smoke

Webinar recording.

Science to support the Wildfire Crisis Strategy
Land management-focused panel discussion with smoke experts
Hosted by the USDA Forest Service Rocky Mountain Research Station

 

Webinar, video, audio icon

TreeMap is a tree-level model of U.S. forests. New data delivery and visualization improvements make it easier to use

Webinar recording.

Single sheet of paper with bullet points

Restoring sagebrush with ‘Modern Wildfire’

View story map.

Decades of overgrazing and wildfire suppression have let juniper trees grow large and spread far across sagebrush country, reducing habitat for sage grouse and other wildlife, and creating conditions for catastrophic wildfires.

In areas where fire is no longer a safe treatment, many land managers are stepping up to fill the role once played by wildfire.

1st page of article

Resilience and resistance of sagebrush ecosystems: Implications for state and transition models and management treatments

View article.

In sagebrush ecosystems invasion of annual exotics and expansion of pinyon and juniper are altering fire regimes and resulting in large-scale ecosystem transformations. Management treatments aim to increase resilience to disturbance and enhance resistance to invasive species by reducing woody fuels and increasing native perennial herbaceous species. This study used Sagebrush Steppe Treatment Evaluation Project data to test predictions on effects of fire vs. mechanical treatments on resilience and resistance for three site types. Warm (mesic) WY Shrub and WY PJ sites had lower resistance to annual exotics than cool (frigid to cool frigid) Mtn PJ sites. In WY shrub, fire and sagebrush mowing had similar effects on shrub cover and, thus, on perennial native herbaceous and exotic cover. In WY PJ and Mtn PJ, effects were greater for fire than cut-and-leave treatments and with high tree cover in general because most woody vegetation was removed increasing resources for other functional groups. In WY shrub, about 20% pretreatment perennial native herb cover was necessary to prevent increases in exotics after treatment. Cooler and moister WY PJ and especially Mtn PJ were more resistant to annual exotics, but perennial native herb cover was still required for site recovery. We use our results to develop state and transition models that illustrate how resilience and resistance influence vegetation dynamics and management options.

Conference/meeting icon

Life from the ashes: Exploring the impact of Rx and natural fire on insects and other invertebrates

Visit conference webpage.

Life from the Ashes explored the positive and negative impacts of prescribed and natural fire related to insects and other invertebrates in landscapes across North America. The symposium provided research and practical insights to inform natural areas professionals as they manage landscapes with fire.

This program was provided in a collaboration between the Natural Areas Association (NAA) and the Xerces Society for Invertebrate Conservation (Xerces). NAA serves those dedicated to the management and restoration of biologically important natural areas in North America. Xerces is an international nonprofit organization that protects the natural world through the conservation of invertebrates and their habitats. Protecting nature requires reliable science to inform practices on-the-ground and a network of stewards who work tirelessly to protect, manage and restore land and water biodiversity.

Journal article icon

Managing medusahead using dormant season grazing in the northern Great Basin

View article.

The invasive annual grass, medusahead, infests rangelands throughout the West, from the Columbia Plateau to the California Annual Grasslands and the Great Basin. Dominating secondary succession in the sagebrush steppe, medusahead can degrade the habitat of threatened species such as the greater sage-grouse. This research explores the potential of dormant season grazing as an applied management strategy to reduce the negative impacts of medusahead while promoting recovery of perennial vegetation at the landscape scale. In particular, it assessed grazing with four treatments from 2018 to 2020: traditional grazing (May–October), dormant season grazing (October–February), traditional + dormant season grazing (May–February), and no grazing. After 2 yr of grazing treatments, biomass, density, cover, and fuel continuity did not differ between treatments (P > 0.05). However, biomass measurements were significantly different between years, which is likely due to greater than normal precipitation in 2019 and 2020. Between 2018 and 2019, annual grass biomass increased by 81% (666–1 212 kg ha−1) and perennial grass biomass increased by 165% (118–313 kg ha−1). Litter biomass decreased by approximately 15% in every year since 2018 (2 374, 2 012, and 1 678 kg ha−1 in 2018–2020). There were not significant differences in cover or density of annual and perennial grasses between treatments and years. Our results indicate that 2 yr may not be adequate time for dormant season grazing treatments to be effective in reducing the abundance of medusahead and that after 2 yr of treatments, dormant season grazing does not have a detrimental effect on perennial vegetation.

Webinar icon

Burning piles- Effects of pile age, moisture, mass, and composition on fire effects, consumption, and decomposition

Access webinar recording.

Millions of acres of fuels reduction treatments are being implemented each year in the fire adapted forests of the US. Typical these fuel reduction treatments target small diameter trees for removal producing large amounts of unmerchantable woody material and elevating surface fuel loadings. Often this material has no market value and is piled by hand or with heavy machinery and burned on site. We studied replicated experimental pile burns from two locations (Wenatchee, WA and Santa Clara, NM) over three years. We examined the effects of time since construction (i.e., pile age) and burn season (fall and spring) on fuel bed properties, combustion dynamics, fuel consumption, and charcoal formation for hand-constructed piles in thinned ponderosa pine-dominated sites. The webinar will also touch on pile decomposition rates and unplanned fire in areas with piled fuels.

Factsheet/brief icon

Fire Weather Alert System Mobile App (FWAS): Realtime data could save lives on the fireline

View factsheet.

While inconvenient for your average hiker or boater, major shifts in the weather can be deadly for firefighters. Longer and more intense fire seasons make accurate and timely weather predictions crucial to firefighter safety. To answer this need, the Fire Weather Alert System (FWAS) was developed by Jason Forthofer, Research Mechanical Engineer, and Natalie Wagenbrenner, Research Meteorologist, both from the Rocky Mountain Research Station’s Missoula Fire Sciences Laboratory. The FWAS is a mobile app that gathers weather data from many sources into a single convenient space and provides firefighters with individualized, easy-to-use, and timely weather alerts on their phones.

Webinar, video, audio icon

Reading the tea leaves: A westwide rangeland fuel assessment

View video (15:45)

Hosted by Matt Reeves, using Microsoft Teams, click the “Watch on web instead” link to view.

Sage-grouse

Harnessing genomics to examine local adaptation in sage-grouse

Webinar starts at 11 Pacific/12 Mtn.

Join link.

Narrow your search

Stay Connected