Search Results: ISO-IEC-27001-Lead-Auditor-Deutsch%25252BBestehen%25252BSie%25252BPECB%25252BCertified%25252BISO/IEC%25252B27001%25252BLead%25252BAuditor%25252Bexam%25252B%25252528ISO-IEC-27001-Lead-Auditor%25252BDeutsch%25252BVersion%25252529%25252521%25252B-%25252Bmit%25252Bh%252525C3%252525B6here%25252BEffizienz%25252Bund%25252Bweniger%25252BM%252525C3%252525BChen%25252B%252525E2%252525AC%2525259B%25252BSuchen%25252BSie%25252Bauf%25252Bder%25252BWebseite%25252B%252525E3%25252580%2525258A%25252Bwww.itzert.com%25252B%252525E3%25252580%2525258B%25252Bnach%25252B%252525E2%25252580%2525259C%25252BISO-IEC-27001-Lead-Auditor-Deutsch%25252B%252525E2%25252580%2525259D%25252Bund%25252Bladen%25252BSie%25252Bes%25252Bkostenlos%25252Bherunter%25252B%252525F0%2525259F%25252598%2525258EISO-IEC-27001-Lead-Auditor-Deutsch%25252BPDF
From 50 to 90% of wild plant species worldwide produce seeds that are dormant upon maturity, with specific dormancy traits driven by species’ occurrence geography, growth form, and genetic factors. While dormancy is a beneficial adaptation for intact natural systems, it can limit plant recruitment in restoration scenarios because seeds may take several seasons to lose dormancy and consequently show low or erratic germination. During this time, seed predation, weed competition, soil erosion, and seed viability loss can lead to plant re‐establishment failure. Understanding and considering seed dormancy and germination traits in restoration planning are thus critical to ensuring effective seed management and seed use efficiency. There are five known dormancy classes (physiological, physical, combinational, morphological, and morphophysiological), each requiring specific cues to alleviate dormancy and enable germination. The dormancy status of a seed can be determined through a series of simple steps that account for initial seed quality and assess germination across a range of environmental conditions. In this article, we outline the steps of the dormancy classification process and the various corresponding methodologies for ex situ dormancy alleviation. We also highlight the importance of record‐keeping and reporting of seed accession information (e.g. geographic coordinates of the seed collection location, cleaning and quality information, storage conditions, and dormancy testing data) to ensure that these factors are adequately considered in restoration planning.
View article.
The 2015 Paris Agreement led to a number of studies that assessed the impact of the 1.5 °C and 2.0 °C increases in global temperature over preindustrial levels. However, those assessments have not actively investigated the impact of these levels of warming on fire weather. In view of a recent series of high-profile wildfire events worldwide, we access fire weather sensitivity based on a set of multi-model large ensemble climate simulations for these low-emission scenarios. The results indicate that the half degree difference between these two thresholds may lead to a significantly increased hazard of wildfire in certain parts of the world, particularly the Amazon, African savanna and Mediterranean. Although further experiments focused on human land use are needed to depict future fire activity, considering that rising temperatures are the most influential factor in augmenting the danger of fire weather, limiting global warming to 1.5 °C would alleviate some risk in these parts of the world.
View article.
Multivariate analyses and ANOVAs showed that in invasion stages where native shrub and perennial grass and forb communities were replaced by annual grass-dominated communities, the ecosystem lost more soil N and C in wet years. Path analysis showed that high water availability led to higher herbaceous cover in all invasion stages. In stages with native shrubs and perennial grasses, higher perennial grass cover was associated with increased soil C and N, while in annual-dominated stages, higher annual grass cover was associated with losses of soil C and N. Also, soil total C and C:N ratios were more homogeneous in annual-dominated invasion stages as indicated by within-site standard deviations. Loss of native shrubs and perennial grasses and forbs coupled with annual grass invasion may lead to long-term declines in soil N and C and hamper restoration efforts. Restoration strategies that use innovative techniques and novel species to address increasing temperatures and ICV and emphasize maintaining plant community structure—shrubs, grasses, and forbs—will allow sagebrush ecosystems to maintain C sequestration, soil fertility, and soil heterogeneity.
View article.
Here, we describe a training approach that we developed to help managers effectively plan to execute intentional, climate-informed actions. This training approach was developed through the Climate Change Response Framework (CCRF) and uses active and focused work time and peer-to-peer interaction to overcome observed barriers to using adaptation planning tools. We evaluate the effectiveness of this approach by examining participant evaluations and outlining the progress of natural resources projects that have participated in our trainings. We outline a case study that describes how this training approach can lead to place and context-based climate-informed action. Finally, we describe best practices based on our experience for engaging natural resources professionals and helping them increase their comfort with climate-informed planning.
View article.
This study analyzed trends in surface air temperature and temperature extremes in the Great Basin during 1901–2010. Researchers found that annual average daily minimum temperature increased significantly during the study period, with daily maximum temperature increasing only slightly. The results of this study suggest that continuation of the overall warming trend would lead to markedly warmer conditions in upcoming decades.
View report.
The 2020 Resources Planning Act (RPA) Assessment summarizes findings about the status, trends, and projected future of the Nation’s forests and rangelands and the renewable resources that they provide. The 2020 RPA Assessment specifically focuses on the effects of both socioeconomic and climatic change on the U.S. land base, disturbance, forests, forest product markets, rangelands, water, biodiversity, and outdoor recreation. Differing assumptions about population and economic growth, land use change, and global climate change from 2020 to 2070 largely influence the outlook for U.S. renewable resources. Many of the key themes from the 2010 RPA Assessment cycle remain relevant, although new data and technologies allow for deeper and wider investigation. Land development will continue to threaten the integrity of forest and rangeland ecosystems. In addition, the combination and interaction of socioeconomic change, climate change, and the associated shifts in disturbances will strain natural resources and lead to increasing management and resource allocation challenges. At the same time, land management and adoption of conservation measures can reduce pressure on natural resources. The RPA Assessment findings and associated data can be useful to resource managers and policymakers as they develop strategies to sustain natural resources.
View article.
We examined the hourly diurnal cycle of 23,557 fires and identified 1,095 overnight burning events (OBEs, each defined as a night when a fire burned through the night) in North America during 2017–2020 using geostationary satellite data and terrestrial fire records. A total of 99% of OBEs were associated with large fires (>1,000 ha) and at least one OBE was identified in 20% of these large fires. OBEs were early onset after ignition and OBE frequency was positively correlated with fire size. Although warming is weakening the climatological barrier to night-time fires6, we found that the main driver of recent OBEs in large fires was the accumulated fuel dryness and availability (that is, drought conditions), which tended to lead to consecutive OBEs in a single wildfire for several days and even weeks. Critically, we show that daytime drought indicators can predict whether an OBE will occur the following night, which could facilitate early detection and management of night-time fires. We also observed increases in fire weather conditions conducive to OBEs over recent decades, suggesting an accelerated disruption of the diurnal fire cycle.
View article.
Our pinyon jay abundance model allowed abundance relationships with pinyon pine and juniper to vary by ecoregion, thereby accounting for potential regional differences in habitat associations. We found pinyon jay abundance was generally positively associated with pinyon pine and juniper cover; however, habitat relationships varied by ecoregion. Additionally, we found positive associations between jay abundance and grass cover, sagebrush cover, and percent bare ground. Our results agree with prior research suggesting mechanical removal of pinyon pine and juniper trees for sagebrush restoration or fuel treatments may negatively affect pinyon jay. Managers wishing to reduce pinyon and juniper tree cover without negatively affecting pinyon jay may benefit from targeting sites where both large-scale distribution models and our local habitat relationships suggest pinyon jay are likely to occur in low numbers. Additionally, our modeled relationships indicate restoration that increases grass cover, sagebrush cover, and bare ground, while maintaining pinyon and (or) juniper cover, may lead to increased local densities of pinyon jay.
View article.
Managed burning of forests can provide benefits to society including mitigated wildfire risk, improved habitat, and more. However, adverse outcomes of escaped fire or smoke pose risks. I reviewed the evolution of the law regulating forest management burns, explored the current legal architecture, and analyzed the economic incentives for involved actors, in order to identify policy options. Liability standards through most of the twentieth century increasingly placed risk burden on landowners and burners, but increased recognition of the benefits of burns led many States to reverse this trend and limit the liability for a subset of qualified burns. Still, there is broad uncertainty about the liability, which can lead to increased costs for all sides. In view of the societal benefits of burning, States may consider how best to provide legal clarity, how to balance associated risks, and where to place the liability burden.
Access study.
Study results suggest that lateral root functioning in Artemisia tridentata is associated with intraspecific identity and ploidy level. Subspecies adapted to habitats with deep soils generally had a smaller horizontal reach, and polyploid cytotypes were associated with greater water uptake compared to their diploid variants. Plant crown volume was a weak predictor of water uptake, and that neighborhood crowding had no discernable effect on water uptake. Intraspecific variation in lateral root functioning can lead to differential patterns of resource acquisition, an essential process in arid ecosystems in the contexts of changing climate and seasonal patterns of precipitation. Altogether, we found that lateral root development and activity is more strongly related to genetic variability within A. tridentata than to plant size. This study highlights how intraspecific variation in life strategies is linked to mechanisms of resource acquisition.