Climate & Fire & Adaptation

Journal article icon

PJ woodland species distributions projected to shrink with climate change

View article.

We developed species distribution models with dryland-focused predictors to project environmental suitability changes across the entirety of three pinyon and six juniper species ranges. We identify areas of robust suitability change by combining suitability projections from multiple emissions scenarios and time periods. PJ species’ suitabilities respond to many temperature and moisture covariates expected to change in the future. Projected responses among PJ species are highly variable, ranging from modest declines with concurrent gains for overall little net change to wide-ranging declines with no gains for overall range contractions. Environmental suitability is projected to decline broadly across the arid United States Southwest and remain relatively stable across the northern Great Basin and Colorado Plateau. Our results suggest unique responses of PJ species to future climate change. We found that species were projected to experience more losses than gains in suitability, for overall range shrinks rather than shifts. Land managers have the capacity to increase woodland resilience to drought, and our results can inform rangeland-wide management planning and conservation efforts in PJ woodlands.

Journal article icon

A fire deficit persists across diverse North American forests despite recent increases in area burned

View article.

Rapid increases in wildfire area burned across North American forests pose novel challenges for managers and society. Increasing area burned raises questions about whether, and to what degree, contemporary fire regimes (1984–2022) are still departed from historical fire regimes (pre-1880). We use the North American tree-ring fire-scar network (NAFSN), a multi-century record comprising >1800 fire-scar sites spanning diverse forest types, and contemporary fire perimeters to ask whether there is a contemporary fire surplus or fire deficit, and whether recent fire years are unprecedented relative to historical fire regimes. Our results indicate, despite increasing area burned in recent decades, that a widespread fire deficit persists across a range of forest types and recent years with exceptionally high area burned are not unprecedented when considering the multi-century perspective offered by fire-scarred trees. For example, ‘record’ contemporary fire years such as 2020 burned 6% of NAFSN sites—the historical average—well below the historical maximum of 29% sites that burned in 1748. Although contemporary fire extent is not unprecedented across many North American forests, there is abundant evidence that unprecedented contemporary fire severity is driving forest loss in many ecosystems and adversely impacting human lives, infrastructure, and water supplies.

Journal article icon

Centering socioecological connections to collaboratively manage post-fire vegetation shifts

View article.

Climate change is altering fire regimes and post-fire conditions, contributing to relatively rapid transformation of landscapes across the western US. Studies are increasingly documenting post-fire  vegetation transitions, particularly from forest to nonforest conditions or from sagebrush to invasive annual grasses. The prevalence of climate-driven, post-fire vegetation transitions is likely to increase in the future with major impacts on social–ecological systems. However, research and management communities have only recently focused attention on this emerging climate risk, and many knowledge gaps remain. We identify three key needs for advancing the management of post-fire vegetation transitions, including centering Indigenous communities in collaborative  management of fire-prone ecosystems, developing decision-relevant science to inform pre- and post-fire management, and supporting adaptive management through improved monitoring and information-sharing across geographic and organizational boundaries. We highlight promising examples that are helping to transform the perception and management of post-fire vegetation transitions.

Synthesis/Technical Report icon

Carbon, climate, and natural disturbance: Review of mechanisms, challenges, and tools for understanding forest carbon

View article.

In this review, we discuss current research on forest carbon risk from natural disturbance under climate change for the United States, with emphasis on advancements in analytical mapping and modeling tools that have potential to drive research for managing future long-term stability of forest carbon. As a natural mechanism for carbon storage, forests are a critical component of meeting climate mitigation strategies designed to combat anthropogenic emissions. Forests consist of long-lived organisms (trees) that can store carbon for centuries or more. However, trees have finite lifespans, and disturbances such as wildfire, insect and disease outbreaks, and drought can hasten tree mortality or reduce tree growth, thereby slowing carbon sequestration, driving carbon emissions, and reducing forest carbon storage in stable pools, particularly the live and standing dead portions that are counted in many carbon offset programs. Many forests have natural disturbance regimes, but climate change and human activities disrupt the frequency and severity of disturbances in ways that are likely to have consequences for the long-term stability of forest carbon. To minimize negative effects and maximize resilience of forest carbon, disturbance risks must be accounted for in carbon offset protocols, carbon management practices, and carbon mapping and modeling techniques. This requires detailed mapping and modeling of the quantities and distribution of forest carbon across the United States and hopefully one day globally; the frequency, severity, and timing of disturbances; the mechanisms by which disturbances affect carbon storage; and how climate change may alter each of these elements. Several tools (e.g. fire spread models, imputed forest inventory models, and forest growth simulators) exist to address one or more of the aforementioned items and can help inform management strategies that reduce forest carbon risk, maintain long-term stability of forest carbon, and further explore challenges, uncertainties, and opportunities for evaluating the continued potential of, and threats to, forests as viable mechanisms for forest carbon storage, including carbon offsets. A growing collective body of research and technological improvements have advanced the science, but we highlight and discuss key limitations, uncertainties, and gaps that remain.

Journal article icon

Wildfire management decisions outweigh mechanical treatment as the keystone to forest landscape adaptation

View article.

Projected climatic changes had a substantial impact on modeled wildfire activity. In the Wildfire Only scenario (no treatments, but including active wildfire and climate change), we observed an upwards inflection point in area burned around mid-century (2060) that had detrimental impacts on total landscape carbon storage. While simulated mechanical treatments (~ 3% area per year) reduced the incidence of high-severity fire, it did not eliminate this inflection completely. Scenarios involving wildland fire use resulted in greater reductions in high-severity fire and a more linear trend in cumulative area burned. Mechanical treatments were beneficial for subtopics under the economic topic given their positive financial return on investment, while wildland fire use scenarios were better for ecological subtopics, primarily due to a greater reduction in high-severity fire. Benefits among the social subtopics were mixed, reflecting the inevitability of tradeoffs in landscapes that we rely on for diverse and countervailing ecosystem services.

Journal article icon

Centering socioecological connections to collaboratively manage post-fire vegetation shifts

View article.

Climate change is altering fire regimes and post-fire conditions, contributing to relatively rapid transformation of landscapes across the western US. Studies are increasingly documenting post-fire vegetation transitions, particularly from forest to non-forest conditions or from sagebrush to invasive annual grasses. The prevalence of climate-driven, post-fire vegetation transitions is likely to increase in the future with major impacts on social–ecological systems. However, research and management communities have only recently focused attention on this emerging climate risk, and many knowledge gaps remain. We identify three key needs for advancing the management of post-fire vegetation transitions, including centering Indigenous communities in collaborative management of fire-prone ecosystems, developing decision-relevant science to inform pre-and post-fire management, and supporting adaptive management through improved monitoring and information-sharing across geographic and organizational boundaries. We highlight promising examples that are helping to transform the perception and management of post-fire vegetation transitions.

Webinar, video, audio icon

Ecological drought: Future of aquatic flows

Webinar recording.

This webinar will explore how climate change is altering aquatic flows in streams and rivers across the country. Implications of how the nexus of climate and aquatic flows may impact aquatic ecosystem management will also be discussed. Research findings from the 2022–2024 Climate Adaptation Postdoctoral (CAP) Fellows cohort will be shared.

Journal article icon

Climate change and ecosystem shifts in the southwestern US

View article.

Climate change shifts ecosystems, altering their compositions and instigating transitions, making climate change the predominant driver of ecosystem instability. Land management agencies experience these climatic effects on ecosystems they administer yet lack applied information to inform mitigation. We address this gap, explaining ecosystem shifts by building relationships between the historical locations of 22 ecosystems (c. 2000) and abiotic data (1970–2000; bioclimate, terrain) within the southwestern United States using ‘ensemble’ machine learning models.

Journal article icon

Postfire futures in southwestern forests: Climate and landscape influences on trajectories of recovery and conversion

View article.

Forest recovery was generally associated with cooler, mesic sites in proximity to forested refugia; shifts toward scrub and grassland types were most common in warmer, dryer locations distant from forested refugia. Under future climate scenarios, models project decreases in postfire forest recovery and increases in nonforest vegetation. However, forest to nonforest conversion was partially offset under a scenario of reduced burn severity and increased retention of forested refugia, highlighting important management opportunities. Burning trends in the southwestern United States suggest that postfire vegetation will occupy a growing landscape fraction, compelling renewed management focus on these areas and paradigm shifts that accommodate ecological change. I illustrate how management decisions around resisting, accepting, or directing change could be informed by an understanding of processes and patterns of postfire community variation and likely future trajectories.

Journal article icon

Forest carbon storage in the western United States: Distribution, drivers, and trends

View article.

Potential drivers of current carbon included harvest, wildfire, insect and disease, topography, and climate. Using random forests, we evaluated driver importance and relationships with current live and dead carbon within ecoregions. We assessed trends using linear models. Pacific Northwest (PNW) and Southwest (SW) ecoregions were most and least carbon dense, respectively. Climate was an important carbon driver in the SW and Lower Rockies. Fire reduced live and increased dead carbon, and was most important in the Upper Rockies and California. No ecoregion was unaffected by fire. Harvest and private ownership reduced carbon, particularly in the PNW. Since 2005, live carbon declined across much of the western US, likely from drought and fire. Carbon has increased in PNW ecoregions, likely recovering from past harvest, but recent record fire years may alter trajectories. Our results provide insight into western US forest carbon function and future vulnerabilities, which is vital for effective climate change mitigation strategies.

Narrow your search

Resource Types
No results found
Article / Book (101)
Webinar (42)
Synthesis / Tech Report (29)
Fact Sheet / Brief (20)
Abstract (11)
Tool (9)
Conference / Meeting (6)
Field Tour / Workshop (4)
Field Guide (3)
Video (3)
Topic
No results found
Carbon (1)
Case Study (3)
Climate & Fire & Adaptation (235)
Decision Support (9)
Fire & Economics (3)
Fire Behavior (5)
Fire Communication & Education (16)
Fire Ecology & Effects (12)
Fire History (5)
Fire Policy (1)
Fire Regimes (13)
Fire Risk (3)
Firefighter Safety (1)
Fuels & Fuel Treatments (17)
Human Dimensions of Fire (5)
Invasive Species (12)
Landscape Analysis (3)
Monitoring (1)
Post-fire Environment & Management (12)
Rehabilitation (1)
Resistance & Resilience (10)
Restoration (17)
Sage-grouse (2)
Sagebrush (16)
Smoke (2)
Targeted Grazing (1)
Traditional Ecological Knowledge (2)
Weather Effects (11)
Wildland Urban Interface (7)

Stay Connected