Fire Ecology & Effects
View research brief.
This research brief highlights a study investigating whether on not deer mice could help combat the invasive weeds infiltrating desert landscapes after fire.
View report.
This report, developed by the Western Association of Fish and Wildlife Agencies (WAFWA), Wildfire and Invasive Species Initiative Working Group (Working Group), summarizes the current state of Fire Operations and Fuels management functions in big sagebrush communities. The intent of this report is to illustrate the type and responsiveness of efforts being made. Finally, the report concludes by presenting future options and a series of recommendations that may inform future policy and allocation decisions.
View article.
Results of this case study suggest that if applications and conditions of this study can be mimicked, livestock producers and natural resource managers can likely use fall prescribed fire in the mesic sagebrush steppe to affect cattle resource-use patterns for 5 years postfire.
View synthesis.
This review of the literature found that in general long-term rest and modern properly managed grazing produce few significant differences. However, some topic areas have not been adequately studied to accurately predict the influence of long-term rest compared to managed grazing. In some situations, not grazing can cause an accumulation of fine fuels that increase fire risk and severity and, subsequently, the probability of sagebrush steppe rangelands converting to exotic annual grasslands. Shifts in plant communities (i.e., exotic annual grass invasion and western juniper encroachment), caused in part from historical improper grazing, cannot be reversed by long-term rest.
View report.
This review synthesizes the state of knowledge on fire effects on vegetation and soils in semi-arid ecosystems in the Great Basin Region. It identifies knowledge gaps and presents a framework for predicting plant successional trajectories following wild and prescribed fires and fire surrogate treatments. Possibly the three most important ecological site characteristics that influence a site’s resilience (ability of the ecological site to recover from disturbance) and resistance to invasive species are soil temperature/moisture regimes and the composition and structure of vegetation on the ecological site just prior to the disturbance event.
View abstracts.
Abstracts of recent papers on fire and fuels management in the West. Prepared by Craig Goodell, Fire Ecologist, USFS Pacific Northwest Region, Portland, OR.
View article.
In this study, researchers measured particulate sediments transported by wind to assess risks to areas downwind of burned rangelands in SE Idaho. Results indicate that wildfire can convert a relatively stable landscape into one that is a major dust source.
View article.
This study explored how fire and various other natural events might shape sagebrush ecosystems in eastern Oregon, USA, and whether those events could affect fire rotation. Results suggested other disturbance events were important in shaping all but the most productive sagebrush communities and influenced fire rotation in drier sagebrush communities. Insects and pronghorn browsing may have been as important as fire in shaping sagebrush-steppe landscapes with freezekill and snow mold locally important.
View article.
This review proposes a classification framework for aspen that is defined by key fire regime parameters (fire severity and probability), and that reflects underlying biophysical settings and correlated aspen functional types. Five aspen fire regime types are proposed: (1) fire-independent, stable aspen; (2) fire-influenced, stable aspen; (3) fire-dependent, seral, conifer-aspen mix; (4) fire-dependent, seral, montane aspen-conifer; and (5) fire-dependent, seral, subalpine aspen-conifer.
View report.
In this literature synthesis and meta-analysis, researchers found that the overall mean effect of fuel treatments on fire responses is large and significant, equating to a reduction in canopy volume scorch from 100% in an untreated stand to 40% in a treated stand, a reduction in scorch height from 30.5 m to 16.1 m, or an inferred reduction in flame length from 3.4 m to 2.1 m. But our synthesis demonstrates that fuel treatments vary widely in effectiveness, which is largely explained by vegetation and treatment type.