Fire Ecology & Effects

Journal article icon

Predicting locations of forest resistance and recruitment in a fiery world

View article.

Using biophysical predictors and patterns of burn severity from 1180 recent fire events, we mapped the locations of potential fire refugia across upland conifer forests in the southwestern United States (US) (99,428 km2 of forest area), a region that is highly vulnerable to fire-driven transformation. We found that low pre-fire forest cover, flat slopes or topographic concavities, moderate weather conditions, spring-season burning, and areas affected by low-to moderate-severity fire within the previous 15 years were most-commonly associated with refugia. Based on current (i.e., 2021) conditions, we predicted that 67.6% and 18.1% of conifer forests in our study area would contain refugia under moderate and extreme fire weather, respectively. However, potential refugia were 36.4% (moderate weather) and 31.2% (extreme weather) more common across forests that experienced recent fires, supporting the increased use of prescribed and resource objective fires during moderate weather conditions to promote fire-resistant landscapes. When overlaid with models of tree recruitment, 23.2% (moderate weather) and 6.4% (extreme weather) of forests were classified as refugia with a high potential to support post-fire recruitment in the surrounding landscape. These locations may be disproportionately valuable for ecosystem sustainability, providing habitat for fire-sensitive species and maintaining forest persistence in an increasingly fire-prone world.

Journal article icon

Long-term costs of uncharacteristic wildfire: Case study of the Schultz Fire in northern Arizona

View article.

Costs associated with the Schultz Fire continued to accrue over 10 years, particularly those associated with post-wildfire flooding, totalling between US$109 and US$114 million. Suppression costs represented only 10% of total costs.

Journal article icon

Post-fire field guide: Create and use post-fire soil burn severity maps

View field guide.

In the weeks following the 2022 Cedar Creek Fire, an Interagency Burned Area Emergency Response (BAER) team was mobilized to identify and mitigate risks to human life and safety and critical water resources in the surrounding communities, including Oakridge, Oregon. During their assessment, the BAER team used a field guide developed by the Rocky Mountain Research Station to create a soil burn severity map and identify areas prone to elevated erosion. Their field work led to quick assessment of potential harm to water quality in Waldo Lake.

Journal article icon

Proportion of forest area burned at high-severity increases with increasing forest cover and connectivity in western US

View article.

High-severity burn area increased with increasing fuel availability and connectivity and decreased with increasing heterogeneity. In 2020, multiple large high-severity burn areas occurred in forests with high fuel availability, which only had small high-severity burn areas prior to 2020.

Journal article icon

Contemporary wildfires are more severe compared to the historical reference period in dry conifer forests in the West

View article.

Study results indicate, that as a proportion of area burned, contemporary fires experienced 2.9 to 13.6 times more stand-replacing fire (depending on the ecoregion) compared to the pre-colonization period. Non-wilderness areas exhibit somewhat higher prevalence of stand-replacing fire, relative to the historical fire regime, than wilderness areas (where logging is prohibited). The relatively small difference between non-wilderness and wilderness suggests that fuel accumulation resulting from fire exclusion has played a larger role than historical logging activities on the prevalence of contemporary stand-replacing fire. Prescribed fires do not exhibit a higher prevalence of stand-replacing fire compared to the historical fire regime.

Field tour/workshop icon

Facing Fire: Aesthetics, Environment, and Policy in the West

Facing Fire: Aesthetics, Environment, and Policy in the West

The panel discussion was livestreamed and recorded by Utah Public Radio. View the recording here.

A cross-disciplinary panel with artists, policy makers, and a fire fighter to explore how we experience, perceive, respond, and research fire in the West. Following the discussion we will have a reception in the museum to see the new Facing Fire exhibition. Moderated by Brian Steed, PhD., Executive Director, Janet Quinney Lawson Institute for Land, Water, and Air.

Panelists:
Jamie Barnes, Director of Utah Division of Forestry, Fire, and State Lands
Noah Berger, Wildlife Photographer in Facing Fire
Samantha Fields, Painter in Facing Fire
Eric LaMalfa, PhD., Ecologist
Wade Snyder, Deputy State Fire Management Officer and Former Alta Hotshot

Journal article icon

Trends, impacts, and cost of catastrophic and frequent wildfires in the sagebrush biome

View article.

More frequent, larger, and severe wildfires necessitate greater resources for fire-prevention, fire-suppression, and postfire restoration activities, while decreasing critical ecosystem services, economic and recreational opportunities, and cultural traditions. Increased flexibility and better prioritization of management activities based on ecological needs, including commitment to long-term prefire and postfire management, are needed to achieve notable reductions in uncharacteristic wildfire activity and associated negative impacts. Collaboration and partnerships across jurisdictional boundaries, agencies, and disciplines can improve consistency in sagebrush-management approaches and thereby contribute to this effort. Here, we provide a synthesis on sagebrush wildfire trends and the impacts of uncharacteristic fire regimes on sagebrush plant communities, dependent wildlife species, fire-suppression costs, and ecosystem services. We also provide an overview of wildland fire coordination efforts among federal, state, and tribal entities.

Journal article icon

The REBURN model: Simulating system-level forest succession and wildfire dynamics

View article.

Here, we present a detailed characterization of REBURN — a geospatial modeling framework designed to simulate reburn dynamics over large areas and long time frames. We interpret fire-vegetation dynamics for a large testbed landscape in eastern Washington State, USA. The landscape is comprised of common temperate forest and nonforest vegetation types distributed along broad topo-edaphic gradients. Each pixel in a vegetation type is represented by a pathway group (PWG), which assigns a specific state-transition model (STM) based on that pixel’s biophysical setting. STMs represent daily simulated and annually summarized vegetation and fuel succession, and wildfire effects on forest and nonforest succession. Wildfire dynamics are driven by annual ignitions, fire weather and topographic conditions, and annual vegetation and fuel successional states of burned and unburned pixels.

Journal article icon

Habitat-relationships reveal potential negative effects of conifer removal on a non-target species

View article.

Our results indicate pinyon jay populations are declining within Bird Conservation Region 16. Jay density was positively associated with sagebrush cover, Palmer Drought Severity Index, and pinyon-juniper cover. Conversely, jay populations were negatively associated with Normalized Difference Vegetation Index (NDVI). We found higher pinyon jay densities within locations possessing both sagebrush and pinyon-juniper cover; conditions characteristic of phase I and II conifer encroachment which are preferentially targeted for conifer removal to restore sagebrush communities. Conifer removal, if conducted at locations with high pinyon jay densities, is therefore likely to negatively affect jay abundance.

Synthesis/Technical Report icon

A review of methods used to link remotely sensed data with the Composite Burn Index

View synthesis.

Study findings largely reflect methods applied in North America – particularly in the western USA – due to the high number of studies in that region. We find the use of different methods across studies introduces variations
that make it difficult to compare outcomes. Additionally, the existing suite of comparative studies focuses on one or few of many possible sources of uncertainty. Thus, compounding error and propagation throughout the many decisions made during analysis is not well understood. Finally, we suggest a broad set of methodological information and key rationales for decision-making that could facilitate future reviews.

Narrow your search

Resource Types
No results found
Article / Book (82)
Synthesis / Tech Report (41)
Webinar (31)
Fact Sheet / Brief (13)
Conference / Meeting (8)
Tool (7)
Field Tour / Workshop (5)
Abstract (4)
Model (4)
Training / Class (4)
Topic
No results found
Case Study (4)
Climate & Fire & Adaptation (12)
Decision Support (3)
Fire & Economics (4)
Fire Behavior (20)
Fire Communication & Education (4)
Fire Ecology & Effects (202)
Fire History (9)
Fire Policy (6)
Fire Regimes (18)
Firefighter Safety (2)
Fuels & Fuel Treatments (54)
Human Dimensions of Fire (1)
Invasive Species (25)
Landscape Analysis (3)
Monitoring (2)
Post-fire Environment & Management (23)
Rehabilitation (2)
Resistance & Resilience (9)
Restoration (16)
Sage-grouse (12)
Sagebrush (30)
Smoke (3)
Weather Effects (5)
Wildland Urban Interface (1)

Stay Connected