Fire Ecology & Effects
Webinar recordings of the Forest Service’s Research and Development SCIENCEx FIRE week.
Fire History and Ecology
Introduction to SCIENCEx Fire Week | Jens Stevens
Indigenous Fire Stewardship and Cultural Burning | Frank Lake
Fire Exclusion and Western Forest Change | Eric Knapp
A History of Fire in the Eastern US: How Humans Modified Fire Regimes through the Holocene | Dan Dey
Conference website.
Better wildland fire governance is needed to protect biodiversity, foster carbon sequestration and healthy forests and assure they are providing goods and services that do not vanish in wildfire smoke.
As Chairman and on behalf of the Organizing Committee of the 8th International Wildland Fire Conference we invite you to come to Portugal with your knowledge, insights, and thoughts. We welcome you to contribute with your institutional or professional case study, your scientific work or your operational success or failure in tackling complexity and uncertainty when governing or managing wildfire risk.
At Porto, you will have a lifetime influencing professional experience, through the opportunity to meet with thousands of people coming from all over the world. We all share similar problems and are deeply committed to work on the solutions.
We will be honored to host you at Porto, to discuss and participate in defining Governance principles towards the development an international framework. We believe that your piece of the puzzle will matter to help your nation and all nations to be better prepared to deal with the challenges ahead of us and to build fire-resilient landscape and societies.
TIAGO MARTINS DE OLIVEIRA
Chairman of the AGIF Board of Directors
View article.
Soil temperature extremes are not uncommon when woody fuels are ignited in prescribed burns or wildfires. Whether this leads to substantial loss of soil organic matter or microbial life is unclear. We created a soil heat gradient by burning four levels of masticated woody fuels (0, 34, 101, and 169 Mg ha−1) to determine if heat thresholds produce abrupt changes in soil C, N, microbial biomass, or fungal hyphae. Twenty-four burns were conducted with masticated fuels overlaying a clay loam soil equilibrated at either 4 or 25% volumetric soil water content. Maximum temperatures ranged from 40 to 450 °C depending on fuel load and soil moisture content, with heat duration (>60 °C) as great as 22 h. Moist soil quenched temperatures two- to threefold compared with dry soil at comparable fuel loads. A slight, gradual decline in total C and N was found with increasing temperature and heat duration, reaching a maximum loss of 14–18% of the total at the highest heat load. Available NH4 increased linearly starting at 150–175 °C and reached a maximum 15-fold increase relative to unburned soil by 450 °C. Nitrification (30 d post-fire) was low regardless of treatment and was essentially eliminated at the highest temperatures. Microbial biomass declined curvilinearly with increased heating, approaching 65% loss compared with unburned soil, and was most rapid in moist soil once temperatures exceeded 60–70 °C. Ultimately, we found no evidence of abrupt heat thresholds for these common soil properties. Instead, property changes followed a slightly declining trajectory (soil C, N, NO3, fungal hyphae) or a steady incremental increase (NH4) or decrease (microbial biomass).
Webinar registration.
The good, bad, and ugly of fire and wildlife – roasty toasty critters or promoting sustainable habitat for expanding and healthy wildlife populations? Let’s discuss the pros and cons of fire on wildlife. How is the lack of fire at the necessary scale, frequency, intensity/severity, and seasonality one of the greatest threats to wildlife in fire-dependent ecosystems?
View article.
Smoke characteristics improved predictions of fire severity in non-reburn areas but not in reburns. Maximum daily smoke cover interacted with elevation, showing a strong dampening effect of high smoke cover on fire severity at low elevations consistent with prior work and a weaker amplifying effect on fire severity at middle elevations with low smoke cover.
View article.
A slight, gradual decline in total C and N was found with increasing temperature and heat duration, reaching a maximum loss of 14–18% of the total at the highest heat load. Available NH4 increased linearly starting at 150–175 °C and reached a maximum 15-fold increase relative to unburned soil by 450 °C. Nitrification (30-d post-fire) was low regardless of treatment and was essentially eliminated at the highest temperatures. Microbial biomass declined curvilinearly with increased heating, approaching 65% loss compared to unburned soil, and was most rapid in moist soil once temperatures exceeded 60–70 °C. Ultimately, we found no evidence of abrupt heat thresholds for these common soil properties. Instead, property changes followed a slightly declining trajectory (soil C, N, NO3, fungal hyphae) or a steady incremental increase (NH4) or decrease (microbial biomass).
View article.
Across the entire arthropod community, fire also had variable effects on community diversity. Fire tended to have a negative effect size on arthropods across life stages, but responses did vary among groups. Nearly all functional groups exhibited a negative response to fire with the exception of herbivores, for which abundance, diversity and richness increased after fire.
Visit conference website.
The Association for Fire Ecology (AFE) is excited to announce that the 10th International Fire Ecology and Management Congress will be held December 4-8, 2023 in Monterey, California at the Hyatt Regency Monterey Hotel. The Call for Proposals will open in January 2023.
Access tool.
Monitoring Trends in Burn Severity (MTBS) includes all fires 1000 acres or greater in the west and 500 acres or greater in the east. The extent of coverage includes the continental U.S., Alaska, Hawai’i and Puerto Rico. MTBS data are freely available to the public.
Access article.
High severity wildfires led to the greatest decrease in cover for all plant functional types, while low severity wildfires caused the least decrease in the functional type cover in most cases, though some variations existed. Furthermore, the impacts of wildfires on vegetation cover were greater in woody (SHR and TREE) types than in herbaceous (AFG and PFG) types. Significant negative correlation existed between percent changes in AFG and PFG cover and SPEI indicating higher prefire soil moisture conditions likely increased fine fuel loads and led to a larger decrease in AFG and PFG cover following wildfires. Significant positive correlation existed between percent changes in SHR and TREE cover and SPEI indicating drier prefire conditions resulted in larger decreases in SHR and TREE cover following wildfires.