Landscape Analysis

Defend and Grow the Core: Implementing the Sagebrush Conservation Design

This special issue of Rangeland Ecology and Management is dedicated to applying the Sagebrush Conservation Design (SCD) to improve conservation outcomes across the sagebrush biome in the face of pervasive ecosystem threats.

Articles included:

State of the sagebrush: Implementing the Sagebrush Conservation Design to save a biome
Closing the conservation gap: Spatial targeting and coordination are needed for to keep pace with sagebrush losses
Climate change amplifies declines in sagebrush ecological integrity
Well-connected core areas retain ecological integrity of sagebrush ecosystems amidst overall declines 2001–2021
Spatial prioritization of conifer management to defend and grow sagebrush cores
A strategic and science-based framework for management of invasive annual grasses in the sagebrush biome
Modeling cropland conversion risk to scale-up averted loss of core sagebrush rangelands
Characterizing wildfire risk for the Sagebrush Conservation Design
An assessment of conservation opportunities within sagebrush ecosystems of US National Parks and Wildlife Refuges
Tool to promote stepping down the Sagebrush Conservation Design to local conservation planning
Exploring the sage grouse initiative’s role in defending and growing sagebrush core areas
Satellite remote sensing to assess shrubland vegetation responses to large-scale juniper removal in the northern Great Basin
Cooperative conservation actions improve sage-grouse population performance within the bi-state distinct population segment
Evaluating the Sagebrush Conservation Design Strategy through the performance of a sagebrush indicator species
How a Sagebrush Conservation Strategy benefits rangeland birds
Carbon Security Index: Novel approach to assessing how secure carbon is in sagebrush ecosystems within the Great Basin
Using technical transfer to bridge science production and management action
Assessing conservation readiness: The where, who, and how of strategic conservation in the sagebrush biome
Where do we go from here with sagebrush conservation: A long-term perspective?
There is no hope without change: A perspective on how we conserve the sagebrush biome

Journal article icon

Strategic fire zones are essential to wildfire risk reduction in the western US

View article.

During plan development, we recommend that Strategic Fire Zones (SFZs) be identified in large blocks (≥ 2,000 ha) of Federal forest lands, buffered (≥ 1–2.4 km) from the wildland-urban interface for the reintroduction of beneficial fire. In SFZs, lightning ignitions, as well as prescribed and cultural burns, would be used to reduce fuels and restore ecosystem services. Although such Zones have been successfully established in a limited number of western National Parks and Wilderness Areas, we identify extensive remote areas in the western US (8.3–12.7 million ha), most outside of wilderness (85–88%), where they could be established. Potential wildland fire Operational Delineations or PODs would be used to identify SFZ boundaries. We outline steps to identify, implement, monitor, and communicate the use and benefits of SFZs.

Webinar, video, audio icon

Exploring the Land Treatment Exploration Tool & LANDFIRE’s Role

View webinar recording.

In this LANDFIRE Office Hour Forest Rangeland Ecosystem Sciences Center & USGS Biologist, Michelle Jeffries details the geoprocessing and hosting requirements for running the Land Treatment Exploration Tool. She explores the ins and outs of the tool and highlights LANDFIRE’s role in informing parts of their analysis. Additionally, she suggests how minor adjustments in LANDFIRE’s versioning and indexing could improve the efficiency of operating this ecological tool.

LANDFIRE logo

A new foundation for LANDFIRE

Webinar recording.

The LANDFIRE program is aware that our stakeholders are interested in obtaining more comprehensive 3D vegetation structure information to inform vegetation and species mapping, carbon accounting, and physics-based fire behavior models. Understanding how to provide annually updated 3D vegetation and fuel metrics in a way that is useful to the most stakeholders and accounts for the logistical and resource constraints within the program is a LANDFIRE goal over the next few years. LANDFIRE wants to connect with innovators who are motivated by the shared challenge of pulling together disparate data sources across scales and dimensions into logical machine learning or deep learning classification methodologies that are accurate, repeatable, and usable by managers. We hope to build these relationships by increasing our engagement across research and management communities to create a new foundation for LANDFIRE.

Journal article icon

Improve sampling plans by using propensity score matching to remove restoration trial selection bias

View article.

Failure to consider the non-random and selective deployment of restoration treatments by managers leads to faulty inference on their effectiveness. However, tools such as propensity-score matching can be used to remove the bias from analyses of the outcomes of management trials or to devise sampling plans that efficiently protect against the bias.

Webinar, video, audio icon

TreeMap is a tree-level model of U.S. forests. New data delivery and visualization improvements make it easier to use

Webinar recording.

Journal article icon

Evaluating spatial coverage of the greater sage-grouse umbrella to conserve sagebrush-dependent species biodiversity within the Wyoming basins

View article

Biodiversity is threatened due to land-use change, overexploitation, pollution, and anthropogenic climate change, altering ecosystem functioning around the globe. Protecting areas rich in biodiversity is often difficult without fully understanding and mapping species’ ecological niche requirements. As a result, the umbrella species concept is often applied, whereby conservation of a surrogate species is used to indirectly protect species that occupy similar ecological communities. One such species is the greater sage-grouse (Centrocercus urophasianus), which has been used as an umbrella to conserve other species within the sagebrush (Artemisia spp.) ecosystem. Sagebrush-steppe ecosystems within the United States have experienced drastic loss, fragmentation, and degradation of remaining habitat, threatening sagebrush-dependent fauna, resulting in west-wide conservation efforts to protect sage-grouse habitats, and presumably other sagebrush wildlife. We evaluated the effectiveness of the greater sage-grouse umbrella to conserve biodiversity using data-driven spatial occupancy and abundance models for seven sagebrush-dependent (obligate or associated) species across the greater Wyoming Basins Ecoregional Assessment (WBEA) area (345,300 km2) and assessed overlap with predicted sage-grouse occurrence. Predicted sage-grouse habitat from empirical models only partially (39–58%) captured habitats identified by predicted occurrence models for three sagebrush-obligate songbirds and 60% of biodiversity hotspots (richness of 4–6 species). Sage-grouse priority areas for conservation only captured 59% of model-predicted sage-grouse habitat, and only slightly fewer (56%) biodiversity hotspots. We suggest that the greater sage-grouse habitats may be partially effective as an umbrella for the conservation of sagebrush-dependent species within the sagebrush biome, and management actions aiming to conserve biodiversity should directly consider the explicit mapping of resource requirements for other taxonomic groups.

Factsheet/brief icon

PODs story map from CO Forest Restoration Institute

View story map

Potential Operational Delineations (PODs) a strategic collaborative spatial wildfire planning framework and decision support tool for wildfire response and mitigation. Background, primer, and use of sections included.

Journal article icon

Using PODs to integrate fire and fuels planning

View article.

This study found that Potential Wildfire Operational Delineations (PODs) were helpful for validating fuels treatment plans and supporting communication among agency staff, and with private landowners and collaborators. Challenges included lack of technical knowledge and skills, unclear leadership direction, potential misalignment with other forest management goals and community and agency buy-in to using PODs.

Journal article icon

Potential Operational Delineations (PODs) in practice

View brief.

Reducing PODs (potential operational delineations) to a network of suppression-focused fuel breaks may dilute the intent and diminish the richness of the framework. Using PODs and fuel breaks to perpetuate fire exclusion is not likely to be effective and may set us up for failure. In many forest types, we may need to rethink design of fuel breaks along POD boundaries to support expansion of proactive use of fire.

Narrow your search

Stay Connected