Landscape Analysis

Journal article icon

How vulnerable are states to wildfire: A livelihood assessment

View article.

We produce a framework needed to compute the livelihood vulnerability index (LVI) for the top 14 American States that are most exposed to wildfires, based on the 2019 Wildfire Risk report of the acreage size burnt in 2018 and 2019: Arizona, California, Florida, Idaho, Montana, Nevada, New Mexico, Oklahoma, Oregon, Utah, Washington, and Wyoming. The LVI is computed for each State by first considering the State’s exposure, sensitivity, and adaptive capacity to wildfire events (known as the three contributing factors). These contributing factors are determined by a set of indictor variables (vulnerability metrics) that are categorized into corresponding major component groups. The framework structure is then justified by performing a principal component analysis (PCA) to ensure that each selected indicator variable corresponds to the correct contributing factor. The LVI for each State is then calculated based on a set of algorithms relating to our framework. LVI values rank between 0 (low LVI) to 1 (high LVI). Our results indicate that Arizona and New Mexico experience the greatest livelihood vulnerability, with an LVI of 0.57 and 0.55, respectively. In contrast, California, Florida, and Texas experience the least livelihood vulnerability to wildfires (0.44, 0.35, 0.33 respectively). LVI is strongly weighted on its contributing factors and is exemplified by the fact that even though California has one of the highest exposures and sensitivity to wildfires, it has very high adaptive capacity measures in place to withstand its livelihood vulnerability. Thus, States with relatively high wildfire exposure can exhibit relatively lower livelihood vulnerability because of adaptive capacity measures in place.


Cross-Boundary Landscape Restoration Workshop

Visit event website.

The year 2022 marks the 20th anniversary of benchmark wildfires in the Southwest and Intermountain regions, most notably, the Rodeo-Chedeski Fire in Arizona, the Hayman and Missionary Ridge fires in Colorado, and the Ponil Complex in New Mexico. The 2002 wildfires were unprecedented in size, intensity, duration and impact, but are now a near-annual occurrence. While western forests are disturbance-adapted, climate change and human influence is altering disturbance regimes. As partners, we need to develop and adopt rapidly evolving strategies to address drought and wildfire threats to ecosystems and the services they provide.

The Southwest Ecological Restoration Institutes, along with collaborative partners, are planning the second Cross-Boundary Landscape Restoration Workshop, March 7-10, 2022 in Fort Collins, CO. This multi-agency and stakeholder gathering builds on the March 2020 Cross-Boundary Workshop, held in Albuquerque, NM.

Factsheet/brief icon

Increasing aridity is forcing some treelines uphill

View research brief.

Lower treelines in the Intermountain West are often defined by the boundary beyond which conditions are too dry for trees. Scientists are observing tree mortality in response to global climate changes and associated increased aridity in some places. Land managers are keenly interested in these changing ecological dynamics and how forests will shift in response to climate change.

Journal article icon

Evaluating establishment of conservation practices in the Conservation Reserve Program

View article.

Across practice types, ≥99% of fields had no evidence of rills, gullies, or pedestaling from erosion, and 91% of fields had <20% bare soil cover, with region being the strongest predictor of bare soil cover. Seventy-nine percent of fields had ≥50% grass cover, with cover differing by practice type and region. Native grass species were present on more fields in wildlife and wetland practices compared to grassland practices. Forb cover >50% and native forb presence occurred most frequently in wildlife practices, with region being the strongest driver of differences. Federally listed noxious grass and forb species occurred on 23% and 61% of fields, respectively, but tended to constitute a small portion of cover in the field. Estimates from edge-of-field surveys and in-field validation sampling were strongly correlated, demonstrating the utility of the edge-of-field surveys. Our results provide the first national-level assessment of CRP establishment in three decades, confirming that enrolled wildlife and wetland practices often have diverse perennial vegetation cover and very few erosional features.

Map icon

Rangeland Viewer

Access the MRLC Rangeland Viewer.

Journal article icon

Vegetation dynamics models for natural resource assessment and planning

View article.

This paper describes the ongoing development of a comprehensive set of vegetation reference conditions based on over 900 quantitative vegetation dynamic models and accompanying description documents for terrestrial ecosystems in the USA. These models and description documents, collaboratively developed by more than 800 experts around the country through the interagency LANDFIRE Program, synthesize fundamental ecological information about ecosystem dynamics, structure, composition, and disturbance regimes before European-American settlement. These products establish the first comprehensive national baseline for measuring vegetation change in the USA, providing land managers and policymakers with a tool to support vegetation restoration and fuel management activities at regional to national scales. Users have applied these products to support a variety of land management needs including exploring ecosystem dynamics, assessing current and desired conditions, and simulating the effects of management actions. In an era of rapid ecological change, these products provide land managers with an adaptable tool for understanding ecosystems and predicting possible future conditions.

Webinar, video, audio icon

State-and-transition-simulation-modeling in real-life: A 3-part miniseries

This 3-part modeling miniseries takes a wide-ranging look at State-and-Transition-Simulation-Models (STSMs) and use the LANDFIRE BpS models as a launching point for inquiry about ecosystem change over time. It communicates practical ways to use STSM in real-life research, management and academia.

Part 1 Recording: Kori Blankenship (LANDFIRE Fire Ecologist) will discuss the basics of (STSMs), introduce the LANDFIRE BpS models and share resources for both novice and intermediate state-and-transition modelers.

Part 2 Recording: Leonardo Frid (Systems Ecologist at Apex Resource Management Solutions) will showcase real-life STSM applications with the ST-Sim package for SyncroSim, demonstrate how to use both the Graphical User Interface and rsyncrosim R package and discuss different approaches for applying state and transition modeling tools in real-life management scenarios.

Part 3 Recording: Randy Swaty (LANDFIRE Ecologist) & Dr. Priscilla Nyamai (Asst. Professor, Grand Valley State Univ.) will discuss how integrating STSMs in the classroom can be useful for conceptualizing ecosystem changes.

Journal article icon

Functional connectivity in continuously distributed, mule deer as revealed by landscape genomics

View article.

Overall, findings highlight the role of different seasonal ranges on mule deer genetic connectivity, and show that anthropogenic features hinder connectivity. This study demonstrates the value of combining a large, genome-wide marker set with recent advances in landscape genomics to evaluate functional connectivity in a wide-ranging migratory species.

Journal article icon

Prioritizing landscapes for grassland bird conservation with hierarchical community models

View article.

Cumulative overlap of species distributions revealed areas with greater potential community response to management. Within each species’ potential regional-level distribution, the grassland bird community generally responded negatively to cropland cover and vegetation productivity at local scales (up to 10 km of survey sites). Multiple species declined with increasing bare ground and litter cover, shrub cover, and grass height measured within sites.

Journal article icon

Sharing the road: Managers and scientists transforming fire management

View article.

The Nature Conservancy and the Forest Service, Department of Agriculture have long-term goals to reintroduce fire into U.S. ecosystems at ecologically relevant spatial and temporal scales. Building on decades of collaborative work, a Master Participating Agreement was signed in March 2017 to increase overall fire management capacity through training and education. In October 2017, The Nature Conservancy hosted a cross-boundary fire training, education, research, and restoration-related event for 2 weeks at Sycan Marsh Preserve in Oregon. Eighty people from 15 organizations applied prescribed fire on over 1,200 acres (490 ha). Managers and scientists participated
in the applied learning and training exercise. The exercise was a success; operational and research objectives were met, as indicated by multiagency, multidisciplinary fire research, and effectiveness monitoring. This paper describes a paradigm shift of fire-adapted, cross-boundary, multiagency landscape-scale restoration. Participants integrated adaptive management and translational ecology so that applied controlled burning incorporated
the most up-to-date scientifically informed management decisions. Scientists worked with practitioners to advance their understanding of the challenges being addressed by managers. The model program has stimulated an exponential increase in landscape scale and ecologically relevant dry forest restoration in eastern Oregon. Collaboration between managers and scientists is foundational in the long-term success of fire-adapted restoration.  Examples of effects of prescribed fire on ecosystem services in the project area, such as increased resilience of trees in drought years, are also provided.

Narrow your search

Can't find what you need?

Stay Connected