Sagebrush

Abstract icon

Nevada Society for Range Management Suggested Reading – Fall 2020

View abstracts.

Abstracts of Recent Papers on Range Management in the West. Prepared by Charlie Clements, Rangeland Scientist, USDA Agricultural Research Service, Reno, NV.

Journal article icon

Unburned remnant sagebrush vs. outplants in post-fire rehabilitation

View article.

This study’s objective was to determine whether remnant/unburned sagebrush patches contribute to sagebrush recovery in surrounding burned areas surrounding them.

Key Findings:

While conventional wisdom is that sagebrush seeds remain close to the mother plant, we found that a measurable percentage of seeds travel up to tens of meters. Remnant patches of sagebrush after fire could contribute to natural regeneration in surrounding landscapes. However, seed arrival was highly variable between sites and work remains to be done to predict where natural regeneration will be sufficient to rehabilitate sagebrush steppe after wildfire.

Webinar, video, audio icon

Fire behavior and ecology of the shrub steppe

Webinar recording.

Alison Dean, Central Oregon Fire Management Service and U.S. Bureau of Land Management, and Marth Brabec, City of Boise, will provide an overview of historic and modern fire behavior in different communities of the sagebrush biome, shrub steppe ecology, and post-fire restoration considerations.

Journal article icon

Interpreting indicators of rangeland health- Version 5

View the reference.

The Interpreting Indicators of Rangeland Health (IIRH) protocol is designed for assessing ecosystem function on rangelands and woodlands. The protocol was developed by an interagency cadre of technical experts and has been in use by for two decades. The protocol is well accepted and is a valuable tool for communicating rangeland conditions with stakeholders. Technical Reference 1734-6 Version 4, which describes the IIRH protocol, was published in 2005.

Refinements and improvements identified through 12 years of experience with class participants and field office personnel applying the protocol as outlined in Version 4 are incorporated into Version 5 of the technical reference. Indicators and attributes used in previous versions of the technical reference are largely the same, and following instructions in Version 5 is not expected to result in differing attribute ratings as compared to assessments completed using Version 4 of TR 1734-6 assuming that the same reference information is used.

Journal article icon

Long-term effects of tree expansion and reduction on soil climate in a semiarid ecosystem

View article.

Because the effects of tree reduction on vegetation can vary with the soil temperature/moisture regime, we also analyzed differences in soil climate variables between the mesic/aridic‐xeric and frigid/xeric regime classifications for our sites. Growing conditions during all seasons except spring were greatly limited by lack of available water, low temperatures, or both. Advanced tree expansion reduced wet days (total hours per 24 hr when hourly average soil water matric potential >−1.5 MPa), especially in early spring. Fire and mechanical tree reduction increased wet days and wet degree days (sum of hourly soil temperatures >0°C when soil is wet per 24 hr) compared with no treatment for most seasons. Burning resulted in higher soil temperatures than untreated or mechanically treated woodlands. Tree reduction at advanced expansion phases increased wet days in spring more than when implemented at earlier phases of expansion. Added wet days from tree reduction were negatively associated with October through June precipitation and vegetation cover, rather than time since treatment, with more wet days added on drier sites and years. The longer period of water availability in spring supports increased growth and cover of not only shrubs and perennial herbs, but also invasive weeds on warmer and drier sites, for many years after tree reduction. We found that sites classified as mesic/aridic‐xeric had warmer soil temperatures all seasons and were drier in spring and winter than sites classified as frigid/xeric. Land managers should consider reducing trees at earlier phases of expansion or consider revegetation when treating at advanced phases on these warmer and drier sites that lack perennial herb potential.

Journal article icon

Post‐fire growth of seeded and planted big sagebrush – strategic designs for restoring greater sage‐grouse nesting habitat

View article.

Wildfires change plant community structure and impact wildlife habitat and population dynamics. Recent wildfire‐induced losses of big sagebrush (Artemisia tridentata) in North American shrublands are outpacing natural recovery and leading to substantial losses in habitat for sagebrush‐obligate species such as Greater Sage‐grouse. Managers are considering restoration strategies that include planting container‐grown sagebrush to improve establishment within areas using more conventional seeding methods. Although it is thought that planting sagebrush provides initial structural advantages over seeding, empirical comparisons of sagebrush growth are lacking between individuals established post‐fire using both methods. Using a Bayesian hierarchical approach, we evaluated sagebrush height and canopy area growth rates for plants established in 26 seeded and 20 planted locations within the Great Basin. We then related recovery rates to previously published nesting habitat requirements for sage‐grouse. Under average weather conditions, planted or seeded sagebrush will require 3 or 4 years, respectively, and a relatively high density (≥ 2 plants/m2) to achieve the minimum recommended canopy cover for sage‐grouse (15 %). Sagebrush grown in warmer and drier conditions met this cover goal months earlier. Although planted sagebrush reached heights to meet sage‐grouse nesting requirements (30 cm) one year earlier than seeded plants, seeded individuals were ~19 cm taller with 410 cm2 more canopy area than planted sagebrush after 8 years. However, big sagebrush establishment from seed is unreliable. Strategically planting small, high density patches of container‐grown sagebrush in historic sage‐grouse nesting habitat combined with lower density seedings in larger surrounding areas may accelerate sage‐grouse habitat restoration.

Icon for Field Guide resources

Shrub management handbook for Utah rangelands

View handbook.

This handbook is a guide to developing realistic project plans and implementing appropriate management strategies by enhancing your understanding of basic shrub biology, ecological concepts,and management principles.

Synthesis/Technical Report icon

Long-term effects of restoration treatments in invaded Wyoming big sagebrush

View report.

Western US sagebrush ecosystems are threatened due to multiple interacting factors: encroachment by conifer woodlands, exotic annual grass invasion, severe wildfire, climate change, and anthropogenic development. Restoration of these communities is primarily focused on reducing conifer species such as western juniper, with the goal of increasing native herbaceous perennials and sagebrush and decreasing exotic annual grass invasion. Assessing the long-term success of restoration treatments is critical for informing future management and treatment strategies since short-term patterns do not generally predict long-term trends. Using a designed experiment from a Wyoming big sagebrush community that was established in 2008, we examined the long-term vegetation response to juniper removal and seeding (cultivar and local) in disturbed and undisturbed areas (slash pile, skid trails, no disturbance). We also examined the landscape scale plant response to juniper removal using repeatedly measured randomly located transects across two restoration units. We found that seeded species persisted in the long term and also mitigated exotic grass increases.

Journal article icon

Disentangling the effects of multiple fires on spatially interspersed sagebrush (Artemisia spp.) communities

View article.

Big sagebrush and scabland sagebrush communities responded uniquely to multiple fires, due to different fuel loadings, fire severities, succession and invasion dynamics. Big sagebrush experienced nearly complete shrub loss and conversion from exotic invaded‐shrubland to exotic annual grassland after only one fire. In contrast, scabland sagebrush retained a minor shrub component and higher relative cover of native herbaceous species, even after three fires. Both communities retained cover of native perennial grasses, including shallow‐ and deep‐rooted species, likely reflecting decreasing fire intensity with number of times burned.

Factsheet/brief icon

Western roots: Diving into a sagebrush sea of diversity

Access brief.

What may appear at first glance as a sea of sagebrush is in reality a complex and diverse ecosystem with a wide variety of plants and animals. The sagebrush steppe teems with life, but threats such as wildfire, grazing and invasive species are affecting the resilience of rangeland across the Northwest. Learn more about the groups of plants that make up a healthy rangeland ecosystem.

Narrow your search

Stay Connected