Sagebrush

1st page of article

Resilience and resistance of sagebrush ecosystems: Implications for state and transition models and management treatments

View article.

In sagebrush ecosystems invasion of annual exotics and expansion of pinyon and juniper are altering fire regimes and resulting in large-scale ecosystem transformations. Management treatments aim to increase resilience to disturbance and enhance resistance to invasive species by reducing woody fuels and increasing native perennial herbaceous species. This study used Sagebrush Steppe Treatment Evaluation Project data to test predictions on effects of fire vs. mechanical treatments on resilience and resistance for three site types. Warm (mesic) WY Shrub and WY PJ sites had lower resistance to annual exotics than cool (frigid to cool frigid) Mtn PJ sites. In WY shrub, fire and sagebrush mowing had similar effects on shrub cover and, thus, on perennial native herbaceous and exotic cover. In WY PJ and Mtn PJ, effects were greater for fire than cut-and-leave treatments and with high tree cover in general because most woody vegetation was removed increasing resources for other functional groups. In WY shrub, about 20% pretreatment perennial native herb cover was necessary to prevent increases in exotics after treatment. Cooler and moister WY PJ and especially Mtn PJ were more resistant to annual exotics, but perennial native herb cover was still required for site recovery. We use our results to develop state and transition models that illustrate how resilience and resistance influence vegetation dynamics and management options.

Tapping soil survey - Page 1

Tapping soil survey information for rapid assessment of sagebrush ecosystem resilience and resistance

View article.

On the Ground Emerging applications of ecosystem resilience and resistance concepts in sagebrush ecosystems allow managers to better predict and mitigate impacts of wildfire and invasive annual grasses. Widely available soil survey information can be harnessed to spatially depict and evaluate relative resilience and resistance from regional to site scales. New products and tools illustrate how managers can use soils data to inform rapid risk assessments, determine appropriate management strategies, and prioritize resources to maintain and restore functioning sagebrush ecosystems.

Journal article icon

Importance of regional variation in conservation planning and defining thresholds for a declining species: Greater sage-grouse example

View article.

This study developed range-wide population and habitat models for greater sage-grouse (Centrocercus urophasianus) that account for regional variation in habitat selection and relative densities of birds for use in conservation planning and risk assessments. The models demonstrate distinct clustering of relative abundance of sage-grouse populations across all management zones. On average approximately half of the breeding population is predicted to be within 10% of the occupied range. We also found 80% of sage-grouse populations were contained in 25 – 34% of the occupied range within each management zone. Range-wide population and habitat models account for regional variation in habitat selection and the relative densities of birds, thus they can serve as a consistent and common currency to assess how sage-grouse habitat and populations overlap with conservation actions or threats over the entire sage-grouse range.

Open book with a bar chart on left page and line graph and lines simulating text on the right page

Hard-copy resources available to you

Want to beef-up your library? You can request the following resources in hard copy from Génie (listed in order of most recent publication date). You can also add them to your electronic library, just follow the links for downloads.

Fire patterns in piñon and juniper land cover types in the Semiarid Western United States from 1984 through 2013, 2018. RMRS-GTR-372

Restoration handbook for sagebrush steppe ecosystems with emphasis on greater sage-grouse habitat—Part 3. Site level restoration decisions, 2018. USGS Circular 1426

Science framework for conservation and restoration of the sagebrush biome: Linking the Department of the Interior’s Integrated Rangeland Fire Management Strategy to long-term strategic conservation actions, 2017. RMRS-GTR-360

Pocket Guide to Sagebrush Birds, reprint, 2017. A partnership between Rocky Mountain Bird Observatory and PRBO Conservation Science

Pocket Guide to Sagebrush, reprint, 2017. Made possible by USU, NRCS, USFS, BLM, PRBO Conservation Science, NDOW, GBFSE

Ecohydrologic impacts of rangeland fire on runoff and erosion: A literature synthesis, 2016. RMRS-GTR-351

Using resilience and resistance concepts to manage threats to sagebrush ecosystems, Gunnison sage-grouse, and Greater sage-grouse in their eastern range: A strategic multi-scale approach, 2016. RMRS-GTR-356

A field guide for rapid assessment of post-wildfire recovery potential in sagebrush and pinon-juniper ecosystems in the Great Basin: Evaluating resilience to disturbance and resistance to invasive annual grasses and predicting vegetation response, 2015. RMRS-GTR-338

A review of fire effects on vegetation and soils in the Great Basin Region: Response and site characteristics, 2013. RMRS-GTR-308

Open book with a bar chart on left page and line graph and lines simulating text on the right page

Fire regimes of mountain big sagebrush communities – Review from FEIS

View synthesis.

This synthesis summarizes information available in the scientific literature on historical patterns and contemporary changes in fuels and fire regimes in mountain big sagebrush communities. This literature suggests that presettlement fires in the sagebrush biome were both lightning- and human-caused. Peak fire season occurred between April and October and varied geographically. Wildfires were high-severity, stand-replacement fires. Fire frequency estimates range from decades to centuries, depending on the applicable scale, methods used, and metrics calculated. Fire frequency was influenced by site characteristics. Because mountain big sagebrush communities occur over a productivity gradient driven by soil moisture and temperature regimes, fire regimes likely varied across the gradient, with more frequent fire on more productive sites that supported more continuous fine fuels. Sites dominated by mountain big sagebrush burned more frequently than sites dominated by Wyoming big sagebrush, because the former tend to be more productive. Mountain big sagebrush communities adjacent to fire-prone forest types (e.g., ponderosa pine) may have had more frequent fires than those adjacent to less fire-prone types (e.g., pinyon-juniper) and those far from forests and woodlands. Most fires were likely small (less than ~1,200 acres (~500 ha)), and large fires (>24,000 acres (10,000 ha)) were infrequent. Historically, large fires in big sagebrush were most likely after one or more relatively wet years or fire reseasons that favored growth of associated grasses, allowing fine fuels to accumulate and become more continuous.

Open book with a bar chart on left page and line graph and lines simulating text on the right page

Fuels guide and database for intact and invaded big sagebrush ecological sites – User manual

View guide.

The Fuels Guide and Database (FGD) is intended to provide fuel loading and vegetation information for big sagebrush (Artemisia tridentata) ecological sites in the Morley Nelson Snake River Birds of Prey National Conservation Area (NCA) in southern Idaho. Sagebrush ecosystems in the NCA and throughout much of the Great Basin are highly influenced by non-native plants that alter successional trajectories and promote frequent wildfires, especially due to fine-fuel loadings that are highly variable over time and space. These dynamic fuel conditions can increase uncertainty when attempting to project fire risk and fire behavior. The FGD was developed to help quantify and assess these dynamic fuel loadings, and it provides access to fuels data across a range of conditions, from relatively intact sagebrush-bunchgrass communities to degraded communities dominated by nonnative annual grasses and forbs. The FGD can be queried for a variety of environmental conditions, and it provides tabular data, reports, and photographic records of fuels based on user queries. This report describes the FGD, including overall data content and data-collection methods, as well as instructions for installing and using the database.

Open book with a bar chart on left page and line graph and lines simulating text on the right page

USGS Sage-grouse and sagebrush ecosystem research annual report for 2018

View report.

This report contains descriptions of USGS sage-grouse and sagebrush ecosystem research projects that are ongoing or were active during 2018 and is organized into five thematic areas: Fire, Invasive Species, Restoration, Sagebrush, Sage-Grouse, and Other Sagebrush-Associated Species; and Climate and Weather.

Page with a big block above lines to signify text

Nevada Society for Range Management Suggested Reading – Summer 2018

View abstracts.

Abstracts of Recent Papers on Range Management in the West. Prepared by Charlie Clements, Rangeland Scientist, USDA Agricultural Research Service, Reno, NV.

Computer monitor with triangular play button on the screen

Rangeland Analysis Platform: A tool to help manage, monitor western rangelands

Access webinar recording.

The Rangeland Analysis Platform (RAP) is a free, online tool that helps landowners and natural resource managers track vegetation through time and plan actions to improve America’s grazing lands. The RAP can be used to provide strategies to improve productivity of grazing lands, manage weeds, mitigate impacts of wildfire and drought, and benefit wildlife habitats. Powered by Google Earth Engine, RAP merges machine learning and cloud-based computing with remote sensing and field data to provide the first-ever annual cover maps of rangeland vegetation. This new platform allows people to view trends in rangeland resources at an unprecedented blend of space (from the Great Plains to the Pacific Ocean), time (1984 to present), and scale (at the ranch, watershed, or county level). Designed to be combined with local knowledge, the RAP helps users better understand vegetation change through time to aid in conservation planning and outcome evaluation. This webinar will describe the innovative breakthrough in mapping vegetation cover and demonstrate RAP applications.

Open book with lines simulating text on left and right pages

Fuel bed response to vegetation treatments in juniper-invaded sagebrush

View article.

This study was conducted in conjunction with the Sagebrush Steppe Treatment Evaluation Project (SageSTEP) and was designed to determine the impact of vegetation treatments on fuel variables two years post treatment in sagebrush steppe with an expanding juniper or pinyon −juniper woodland component. Ten locations that characterize common sagebrush steppe sites with an expanding woodland component in the Intermountain West were chosen for analysis. These woodland sites, covering a gradient of juniper development phases, were treated with mechanical (cut and leave) and prescribed fire treatments.

Narrow your search

Stay Connected