Research and Publications
View paper.
Collectively, these results provide clear evidence that local sage-grouse distributions and demographic rates are influenced by pinyon-juniper, especially in habitats with higher primary productivity but relatively low and seemingly benign tree cover. Such areas may function as ecological traps that convey attractive resources but adversely affect population vital rates. To increase sage-grouse survival, our model predictions support reducing actual pinyon-juniper cover as low as 1.5%, which is lower than the published target of 4.0%. These results may represent effects of pinyon-juniper cover in areas with similar ecological conditions to those of the Bi-State Distinct Population Segment, where populations occur at relatively high elevations and pinyon-juniper is abundant and widespread.
View article.
As part of an internal program assessment, this study evaluated the extent of fuel treatments and wildfire occurrence within lands managed by the National Forest System (NFS) between 2008 and 2012. Annually, 45% of NFS lands that would have historically burned were disturbed by fuel treatments and characteristic wildfire, indicating that NFS lands remain in a “disturbance deficit.” The highest wildfire hazard class had the lowest percentage of area treated and the highest proportion of both wildfire of any severity and uncharacteristically high-severity wildfire, suggesting that an alternative distribution of fuel treatment locations will probably improve program effectiveness.
View paper.
This study found that to retain the shrub, especially sagebrush, components on a site and increase ecosystem resilience and resistance through increases in tall grasses, treatment should occur at low to mid tree dominance index (TDI) using mechanical methods, such as cutting or mastication. Effects of fire and mechanical treatments implemented at different phases of tree dominance create different successional trajectories that could be incorporated into state-and-transition-models to guide management decisions.
View article.
In a nutshell, Finney and other forest experts say, periodic fires reduce fine fuels such as pine needles. They stop young conifer trees from growing into big conifers. Meadows form and break up continuous stands of mature forest.
View brief.
Researchers measured 14 transects across two different fuel treatment types on three different units. For both fuel treatment types, only ladder fuels had been removed. They found that while severity was reduced at all sites, the spatial distribution of fire severity within the treatment areas varied by treatment type and unit as well as which fire severity metric they were analyzing. They found fuel treatments reduced fire severity anywhere from -7 m to 533 m into the treatment area. Kennedy and Johnson (2014) caution that local site conditions, topography and vegetation type will be other sources of variation in fire severity.
View report.
The fire characteristics chart is a graphical method of presenting U.S. National Fire Danger Rating System (NFDRS) indexes and components as well as primary surface or crown fire behavior characteristics. Computer software has been developed to produce fire characteristics charts for both fire danger and fire behavior in a format suitable for inclusion in reports and presentations. Scales, colors, labels, and legends can be modified as needed. The fire characteristics chart for fire behavior has been described previously (Andrews et al. 2011). This report describes the fire characteristics chart for fire danger, which displays the relationships among the Spread Component, Energy Release Component, and Burning Index by plotting the three values as a single point. Indices calculated by using FireFamilyPlus can be imported into the fire danger characteristics chart software. Example applications of this software for comparing fire seasons, weather stations, and fire danger rating fuel models are presented.
View brief.
U.S. Geological Survey scientists analyzed a collection of climate, fire and erosion models for 471 large watersheds throughout the western U.S. They found that by 2050, the amount of sediment in more than one-third of watersheds could at least double. In nearly nine-tenths of the watersheds, sedimentation is projected to increase by more than 10 percent.
View article.
This study estimates that fire has approximately twice the treatment life of cutting at time horizons approaching 100 yr, but, has high up-front conservation costs due to temporary loss of sagebrush. Cutting has less up-front conservation costs because sagebrush is unaffected, but it is more expensive over longer management time horizons because of decreased durability. Managing conifers within sage-grouse habitat is difficult because of the necessity to maintain the majority of the landscape in sagebrush habitat and because the threshold for negative conifer effects occurs fairly early in the successional process. The time needed for recovery of sagebrush creates limits to fire use in managing sage-grouse habitat. Utilizing a combination of fire and cutting treatments is most financially and ecologically sustainable over long time horizons involved in managing conifer-prone sage-grouse habitat.
View article.
This study evaluated nutrient availability and herbaceous recovery following various cutting and prescribed fire treatments in late succession western juniper woodlands on two sites in southeast Oregon from 2007 to 2012. Treatments were untreated controls, partial cutting followed by fall broadcast burning (SEP), cut and leave (CUT), and cut and burn in winter (JAN) and spring (APR). Soil inorganic N (NO3−, NH4+), phosphorus (H2PO4−), potassium (K+), and cover of herbaceous species were measured in three zones; interspace, litter mats around the tree canopy (canopy), and beneath felled trees (debris). Peak nutrient availability tended to occur within the first two years after treatment. The increases in N, P, and K were greatest in severely burned debris and canopy zones of the SEP and APR treatments. Invasive annual grass cover was positively correlated to soil inorganic N concentrations. Herbaceous composition at the cool, wet big sagebrush-Idaho fescue site was generally resistant to annual grasses after juniper treatments and native plants dominating post-treatment even in highly impacted debris and canopy zones of the SEP treatment. The warm dry big sagebrush-bluebunch wheatgrass site was less resistance and resilient, thus, exotic annual grasses were a major component of the understory especially when tree and slash burning was of high fire severity.
View article.
In an experiment replicated at three burned sites in the northern Great Basin, this study compared Wyoming big sagebrush establishment across treatments differing by seed delivery technique, timing, and rate of seed application. Wherever density differed between treatments, it was consistently higher in certain treatment levels (minimum-till > conventional drill, drill-delivery > broadcast-delivery, fall broadcast > winter broadcast, and higher rates > lower rates). Densities declined between years at two sites, but we did not find evidence that declines were due to density-dependent mortality. Results indicate that seeding success can likely be enhanced by using a minimum-till imprinter seeding method and using seeding rates higher than typical postfire seeding recommendations for Wyoming big sagebrush.